

ASX ANNOUNCEMENT

Telix Investor Day Presentation Materials

Melbourne (Australia) and Indianapolis, IN (U.S.) – 11 June 2025. Telix Pharmaceuticals Limited (ASX: TLX, NASDAQ: TLX, "Telix", "the Company") is holding an Investor Day in New York City on Wednesday, June 11, 2025, 8:30am ET (10:30pm AEST) - 12.00pm ET. A copy of the slides to be presented at the event are included with this lodgement.

The briefing is a hybrid event, with in-person attendance open to institutional investors and analysts.

Virtual participants can join via live webcast. Pre-registration is available at the following link. <u>https://www.streamy.cloud/telixinvestorday.html</u>.

A recording will be available on Telix's website following the event.

About Telix Pharmaceuticals Limited

Telix is a biopharmaceutical company focused on the development and commercialization of therapeutic and diagnostic radiopharmaceuticals and associated medical technologies. Telix is headquartered in Melbourne, Australia, with international operations in the United States, Brazil, Canada, Europe (Belgium and Switzerland), and Japan. Telix is developing a portfolio of clinical and commercial stage products that aims to address significant unmet medical needs in oncology and rare diseases. Telix is listed on the Australian Securities Exchange (ASX: TLX) and the Nasdaq Global Select Market (NASDAQ: TLX).

Visit <u>www.telixpharma.com</u> for further information about Telix, including details of the latest share price, ASX and SEC filings, investor and analyst presentations, news releases, event details and other publications that may be of interest. You can also follow Telix on <u>LinkedIn</u>, <u>X</u> and <u>Facebook</u>.

Telix Investor Relations

Ms. Kyahn Williamson Telix Pharmaceuticals Limited SVP Investor Relations and Corporate Communications Email: <u>kyahn.williamson@telixpharma.com</u>

Telix Investor Relations (U.S.)

Annie Kasparian Telix Pharmaceuticals Limited Director Investor Relations and Corporate Communications Email: <u>annie.kasparian@telixpharma.com</u>

Lisa Wilson In-Site Communications Email: <u>lwilson@insitecony.com</u>

This announcement has been authorized for release by the Telix Pharmaceuticals Limited Disclosure Committee on behalf of the Board.

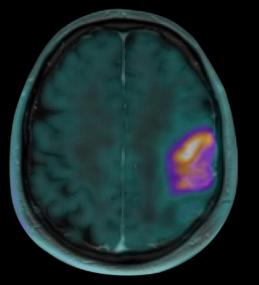
Legal Notices

You should read this announcement together with our risk factors, as disclosed in our most recently filed reports with the Australian Securities Exchange (ASX), U.S. Securities and Exchange Commission (SEC), including our Annual Report on Form 20-F filed with the SEC, or on our website.

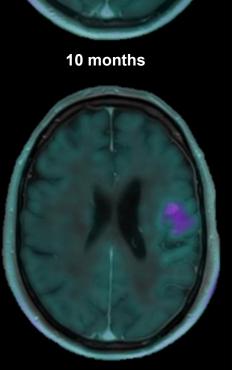
The information contained in this announcement is not intended to be an offer for subscription, invitation or recommendation with respect to securities of Telix Pharmaceuticals Limited (Telix) in any jurisdiction, including the United States. The information and opinions contained in this announcement are subject to change without notification. To the maximum extent permitted by law, Telix disclaims any obligation or undertaking to update or revise any information or opinions contained in this announcement, including any forward-looking statements (as referred to below), whether as a result of new information, future developments, a change in expectations or assumptions, or otherwise. No representation or warranty, express or implied, is made in relation to the accuracy or completeness of the information contained or opinions expressed in the course of this announcement.

This announcement may contain forward-looking statements, including within the meaning of the U.S. Private Securities Litigation Reform Act of 1995, that relate to anticipated future events, financial performance, plans, strategies or business developments. Forward-looking statements can generally be identified by the use of words such as "may", "expect", "intend", "plan", "estimate", "anticipate", "believe", "outlook", "forecast" and "guidance", or the negative of these words or other similar terms or expressions. Forward-looking statements involve known and unknown risks, uncertainties and other factors that may cause our actual results, levels of activity, performance or achievements to differ materially from any future results, levels of activity, performance or achievements expressed or implied by these forward-looking statements. Forward-looking statements are based on Telix's good-faith assumptions as to the financial, market, regulatory and other risks and considerations that exist and affect Telix's business and operations in the future and there can be no assurance that any of the assumptions will prove to be correct. In the context of Telix's business, forward-looking statements may include, but are not limited to, statements about: the initiation, timing, progress and results of Telix's preclinical and clinical trials, and Telix's research and development programs; Telix's ability to advance product candidates into, enrol and successfully complete, clinical studies, including multi-national clinical trials; the timing or likelihood of regulatory filings and approvals for Telix's product candidates, manufacturing activities and product marketing activities; Telix's sales, marketing and distribution and manufacturing capabilities and strategies; the commercialization of Telix's product candidates, if or when they have been approved; Telix's ability to obtain an adequate supply of raw materials at reasonable costs for its products and product candidates; estimates of Telix's expenses, future revenues and capital requirements; Telix's financial performance; developments relating to Telix's competitors and industry; the anticipated impact of U.S. and foreign tariffs and other macroeconomic conditions on Telix's business; and the pricing and reimbursement of Telix's product candidates, if and after they have been approved. Telix's actual results, performance or achievements may be materially different from those which may be expressed or implied by such statements, and the differences may be adverse. Accordingly, you should not place undue reliance on these forward-looking statements.

©2025 Telix Pharmaceuticals Limited. Telix Pharmaceuticals®, Telix Group company, and Telix product names and logos are trademarks of Telix Pharmaceuticals Limited and its affiliates – all rights reserved. Trademark registration status may vary from country to country.



Growth opportunities Telix's competitive advantage


Investor Day 11 June, 2025

ASX: TLX | NASDAQ: TLX

Glioblastoma patient (salvage) with clinically stable disease 18 months from initiation of TLX101 therapy

T = 0

16 months

18 months

Patient representative scans - individual results may vary. Credit A. Braat, Utrecht.

Disclaimer

This presentation should be read together with our risk factors, as disclosed in our most recently filed reports with the Australian Securities Exchange (ASX) and the U.S. Securities and Exchange Commission (SEC), including our Annual Report on Form 20-F filed with the SEC, or on our website.

The information contained in this presentation is not intended to be an offer for subscription, invitation or recommendation with respect to shares of Telix Pharmaceuticals Limited (Telix) in any jurisdiction, including the United States. The information and opinions contained in this presentation are subject to change without notification. To the maximum extent permitted by law, Telix disclaims any obligation or undertaking to update or revise any information or opinions contained in this presentation, including statements (as referred to below), whether as a result of new information, future developments, a change in expectations or assumptions, or otherwise. No representation or warranty, express or implied, is made in relation to the accuracy or completeness of the information contained or opinions expressed in this presentation.

This presentation may contain forward-looking statements, including within the meaning of the U.S. Private Securities Litigation Reform Act of 1995, that relate to anticipated future events, financial performance, plans, strategies or business developments. Forward-looking statements can generally be identified by the use of words such as "may", "expect", "intend", "plan", "estimate", "anticipate", "believe", "outlook", "forecast" and "guidance", or the negative of these words or other similar terms or expressions. Forward-looking statements involve known and unknown risks, uncertainties and other factors that may cause Telix's actual results, levels of activity, performance or achievements to differ materially from any future results, levels of activity, performance or achievements expressed or implied by these forward-looking statements. Forward-looking statements assumptions as to the financial, market, regulatory and other risks and considerations that exist and affect Telix's business and operations in the future and there can be no assurance that any of the assumptions will prove to be correct. In the context of Telix's business, forward-looking statements may include, but are not limited to, statements about: the initiation, timing, progress and results of Telix's preclinical and clinical trials, and Telix's research and development programs; Telix's ability to advance product candidates into, enroll and successfully complete, clinical studies, including multi-national clinical trials; the timing or likelihood of regulatory filings and approvals for Telix's product candidates, if or when they have been approved; Telix's ability to obtain an adequate supply of raw materials at reasonable costs for its products and product candidates; estimates of Telix's business; and the pricing and reimbursement of Telix's business; and the pricing and reimb

This presentation also contains estimates and other statistical data made by independent parties and by Telix relating to market size and other data about its industry. This data involves a number of assumptions and limitations, and you are cautioned not to give undue weight to such data and estimates. In addition, projections, assumptions and estimates of Telix's future performance and the future performance of the markets in which it operates are necessarily subject to a high degree of uncertainty and risk.

Telix's first generation PSMA-PET imaging product, gallium-68 (⁶⁸Ga) gozetotide injection (also known as ⁶⁸Ga PSMA-11 and marketed under the brand name Illuccix®), has been approved by the U.S. Food and Drug Administration (FDA), by the Australian Therapeutic Goods Administration (TGA), by Health Canada, by the Brazilian Health Regulatory Agency (ANVISA), by the UK Medicines and Healthcare Products Regulatory Agency (MHRA), by the French National Agency for the Safety of Medicine and Health Products (ANSM), by the German Federal Institute for Drugs and Medical Devices (BfArM) and in multiple countries within the European Economic Area (EEA) following a positive decentralized procedure (DCP) opinion by (BfArM. Gozellix® (kit for the preparation of gallium-68 (⁶⁸Ga) gozetotide injection) has been approved by the U.S. FDA.

Telix's osteomyelitis (bone infection) imaging agent, technetium-99m (^{99m}Tc) besilesomab (marketed under the brand name Scintimun®) is approved in 32 European countries and Mexico. Telix's miniaturized surgical gamma probe, SENSEI®, for minimally invasive and robotic-assisted surgery, is registered with the FDA for use in the U.S. and has attained a Conformité Européenne (CE) Mark for use in the EEA.

No other Telix drug or device has received marketing authorization in any jurisdiction. Any other Telix drug or device that is discussed in this presentation is investigational or under development and not approved by any regulatory authority. The safety or efficacy of any unapproved drug or device has not been determined by any regulatory authority.

©2025 Telix Pharmaceuticals Limited. The Telix Pharmaceuticals®, Telix Group company, and Telix product names and logos are trademarks of Telix Pharmaceuticals Limited and its affiliates – all rights reserved. Trademark registration status may vary from country to country. Pixclara and Zircaix brand names subject to final regulatory approval.

Introduction

Kyahn Williamson

SVP Investor Relations and Corporate Communications

Today's presenters – Telix

Kyahn Williamson SVP IR and Corporate Communications

Kevin Richardson CEO, Precision Medicine

() Telix

Christian Behrenbruch Managing Director and Group CEO

Paul Schaffer Chief Technology Officer

David N. Cade, MD Group Chief Medical Officer

Pamela Habib, MD Chief Medical Officer, Therapeutics

Richard Valeix CEO, Therapeutics

David Liu, MD Chief Medical Officer, Precision Medicine

4

Physician presenters

Joseph Osborne, MD Professor of Radiology Weill Cornell Medicine

Oliver Sartor, MD Director of Transformational Prostate Cancer Research LCMC Hospitals, New Orleans, LA

John de Groot, MD Professor of Neurology, Neuro-Oncology University of California San Francisco

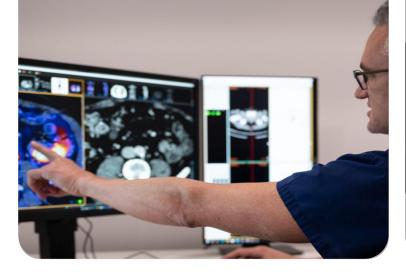
Presenters are independent experts not employed by Telix but have been paid fair market value for their time. Views expressed are speakers' own. Any presenter's response during Q&A has not been reviewed in advance by Telix.

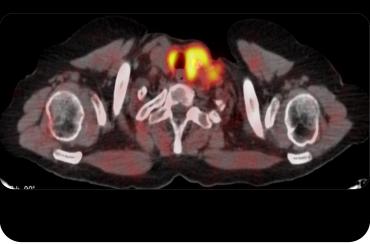
Agenda

- Introductions
- CEO Welcome and Vision
- Key trends in radiopharma development
- Precision Medicine & indication expansion in the PSMA market
- Zircaix: Adding depth to our commercial focus & KOL discussion
- Therapeutics
- Urologic oncology & KOL discussion
- Q&A & break
- Urologic oncology cont'd
- Brain cancer & KOL discussion
- Pan Cancer: Spotlight on two key targets (CAIX and FAP)
- Closing remarks / lunch

Vision

Dr. Christian Behrenbruch Managing Director and Group CEO


Telix: Defining the future of radiopharma

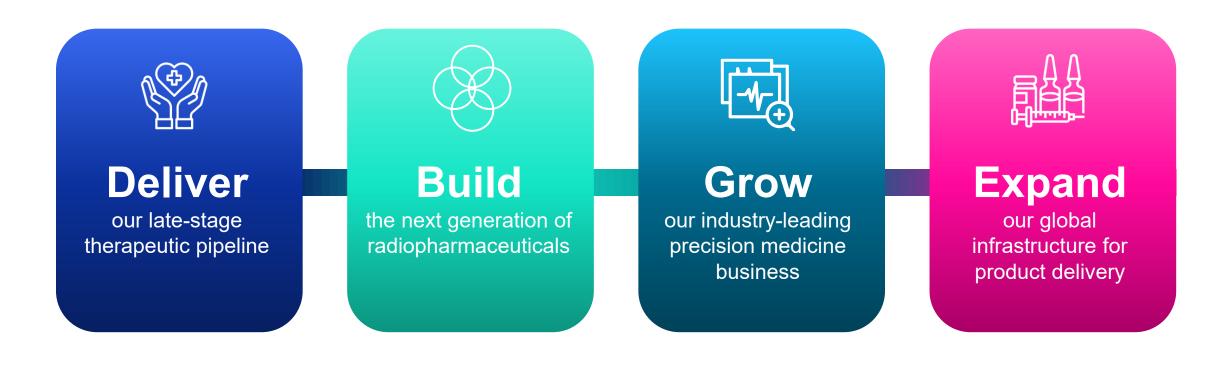

We are leading the theranostic medicine modality

A global radiopharmaceutical company with:

Established global commercial footprint Only company with two PSMA-PET¹ agents in U.S.

Deep theranostic pipeline – multiple near-term catalysts plus next-generation assets

Manufacturing, isotope and distribution partnerships delivering to patients



Patient representative scan – individual results may vary. 1. Imaging of prostate-specific membrane antigen with positron emission tomography.

Our growth strategy

Our mission is to be the global leader in theranostic radiopharmaceuticals

Building competitive advantage

Telix's key differentiators

Commitment to precision medicine

Leveraging the clinical and commercial benefits for a theranostic approach

Differentiated therapeutic candidates

Opportunity to address unmet need across the patient journey, multiple shots on goal

Specialist commercial teams and franchise depth

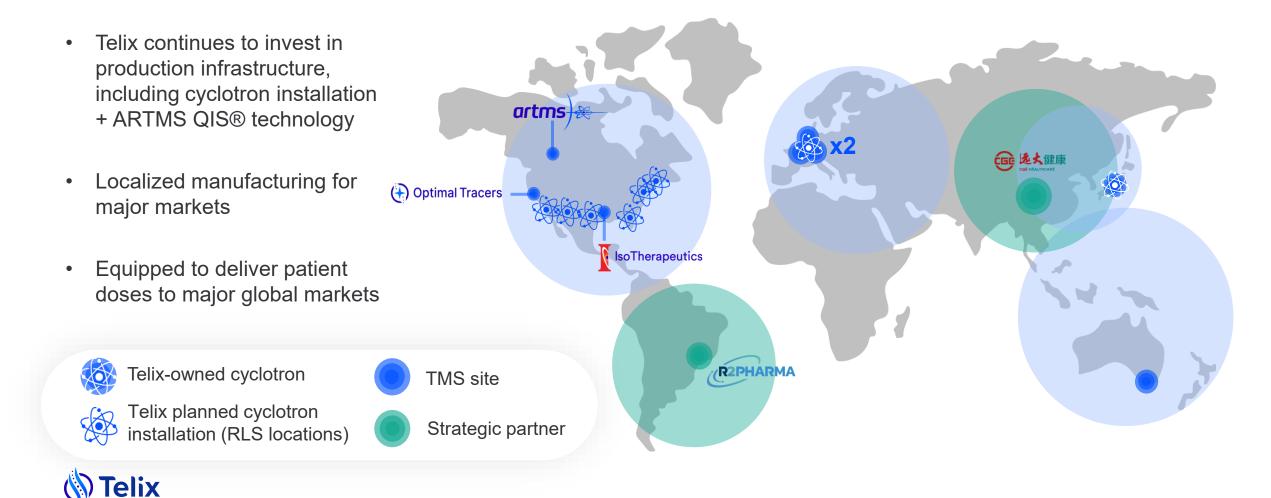
End-to-end offering for the urology field, demonstrated track record of commercial delivery

Telix Integrated Theranostic Approach

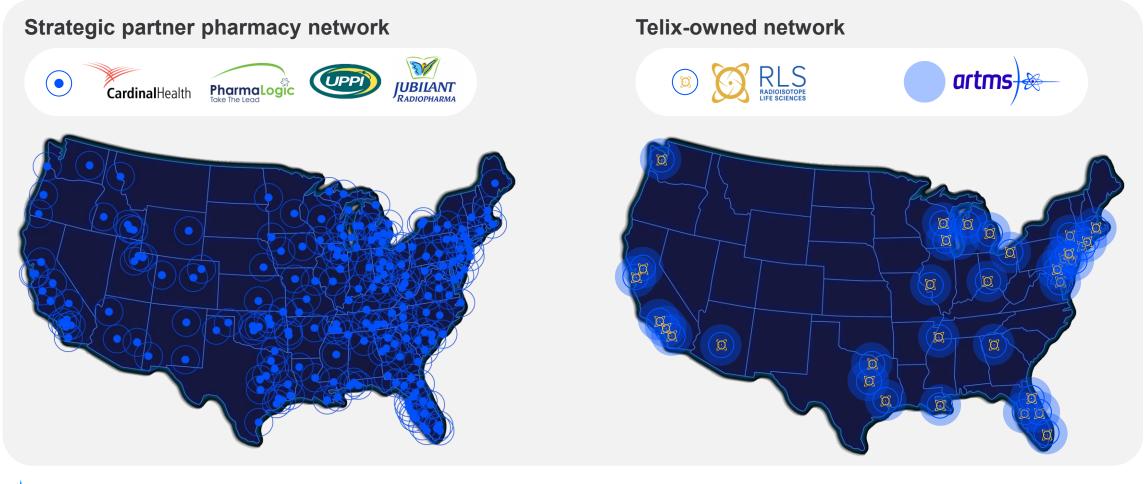
Global manufacturing and supply chain excellence

See it. Treat it.

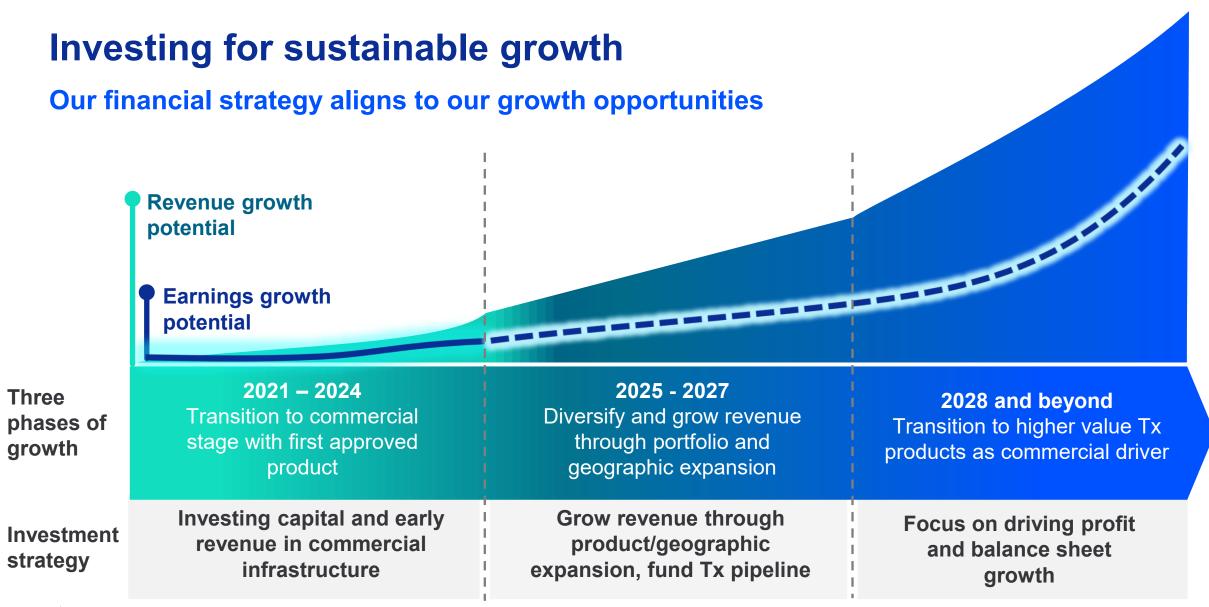
Reliable and scalable production capabilities and supply to meet future demand


Next-generation assets and R&D platform

Biologics and drug development platform optimized for targeted alpha therapies

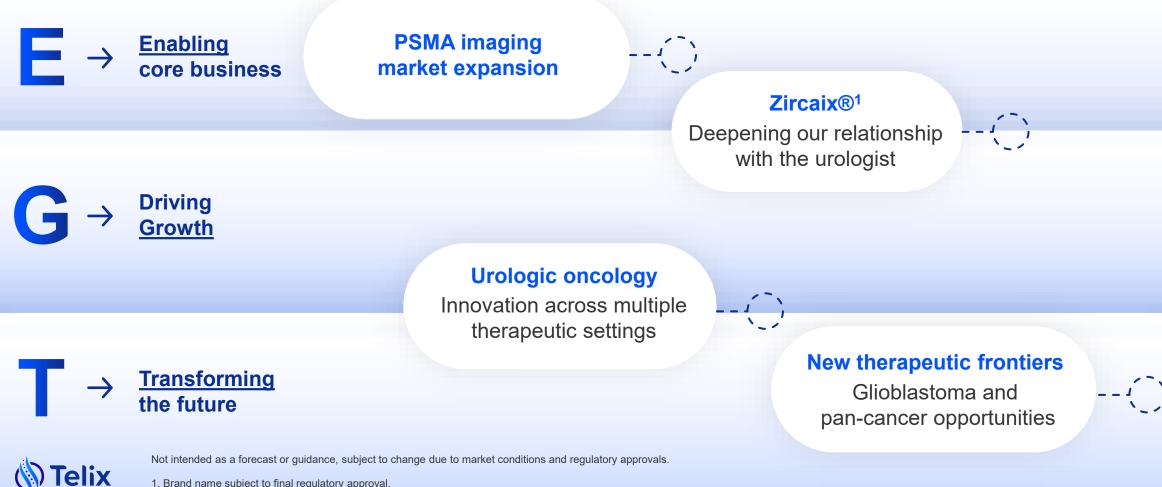

Global product delivery infrastructure is key to success

Our in-house capability and capacity continues to grow



U.S. coverage

Together with partners able to deliver radiopharmaceuticals, at scale, across the U.S.



Growth opportunities

Today's session highlights "select" growth opportunities across the portfolio

Key trends in radiopharma development

Dr. Paul Schaffer Chief Technology Officer

The value of radiopharma-specific R&D

Global expertise and leading-edge technology to harness the key trends in radiopharma

Chemistry & Physics (CTO)

 Targetry & novel radioisotopes

- Medical physics
- Artificial Intelligence (AI)

 Radiochemistry & chelators Surgical devices

Biology & Biologics (Chief Scientist)

- New target selection
- Drug combinations
- Targeting technology

- Bioconjugation &
 - protein chemistry
- In vivo radiobiology

Benefits of in-house R&D

- Drug development, optimized for radiopharma
- In-house pre-clinical to clinical translation
- Future focused: next-generation assets and enabling technologies
- Supply chain technical excellence
- IP generation

Telix is building competitive advantage through our highly specialized R&D organization

Trend #1: New isotopes entering the clinic

Opportunity to harness the varying properties of isotopes

Emitters¹

β+/γ	β	α	Auger
¹¹ C	⁶⁷ Cu	²¹¹ At	^{58m} Co
¹⁸ F	⁸⁹ Sr	^{212/213} Bi	⁷¹ Ge
⁶⁴ Cu	⁹⁰ Y	²¹² Pb	¹⁰³ Pd
⁶⁸ Ga	131	²²³ Ra	^{103m} Rh
⁸⁶ Y	¹⁵³ Sm	²²⁵ Ac	¹¹⁹ Sb
⁸⁹ Zr	¹⁶¹ Tb	²²⁷ Th	¹⁹¹ Os
^{99m} Tc	¹⁷⁷ Lu	¹⁴⁹ Tb	
¹¹¹ In	¹⁸⁸ Re		
123/124	²¹² Pb		
¹⁵⁵ Tb			

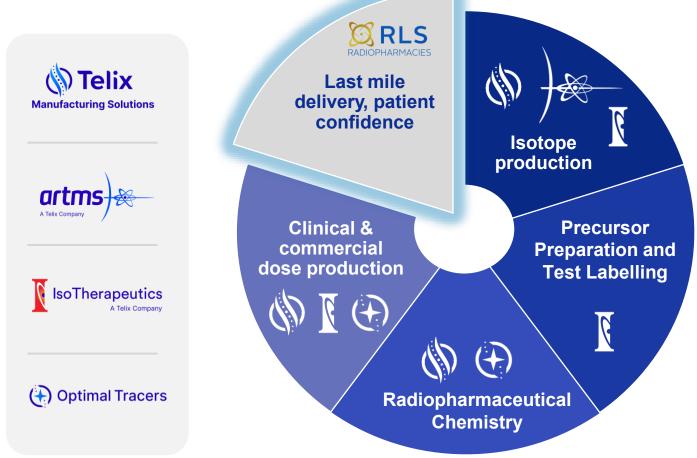
Choice of radioisotope

- Emission profile
- Half-life
- Depth of penetration
- Tumor size / distribution
- Tumor microenvironment

Choice of targeting agent

- Route of excretion
- Pharmacokinetics
- Binding and cancer specificity
- Internalization and residualization

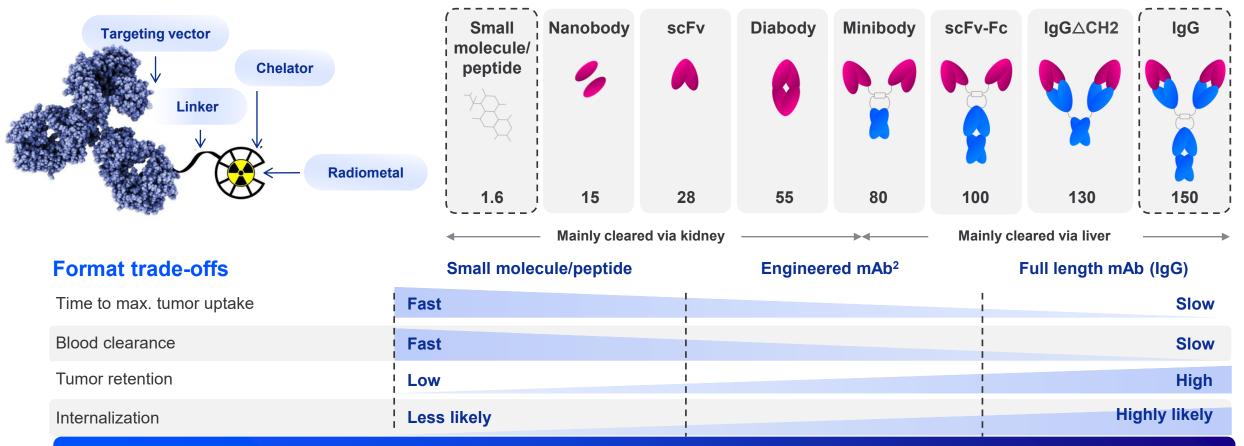
Telix selects targeting vectors and isotopes designed to optimize the therapeutic index


Trend #2: Evolution of manufacturing processes

Securing supply chain also includes smarter scale-up

Supply chain excellence

- Secure supply of medically important isotopes
- Investment in novel production technologies to support scale-up
- Building out in-house capacity to meet needs of U.S. and global market
- Strategic external partnerships


Telix is investing ahead of the curve to meet demand and deliver next-generation therapeutics

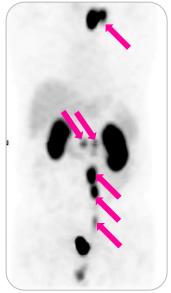
Trend #3: Targeting vectors no longer straight-out-of-the-box

Antibody engineering creates new possibilities to modulate tumor binding and PK¹

Telix's biologics platform³ can optimize virtually any antibody for use as a radiopharmaceutical

1. Wu et al. *Methods*. 2014; PK: Pharmacokinetics 2 Monoclonal antibody

Telix ASX disclosure 31 January 2025. Telix acquired a proprietary novel biologics technology platform from ImaginAb, Inc.


Trend #4: Dosimetry will supercharge personalized medicine¹

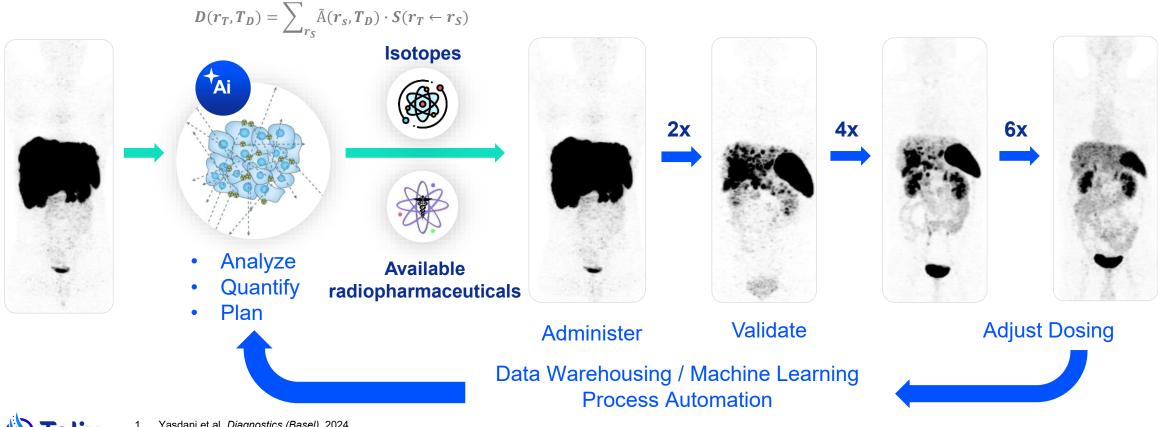
Software and AI will further unlock its potential

- Dosimetry is the scientific measurement, calculation, and assessment of the absorbed radiation dose
- Used to ensure safety and effectiveness of exposure to:
 - Assess the distribution of radiation over time and across tissues
 - Determine amount of radiation absorbed by tissues
 - Anticipate the potential effects on biological systems, including risk of radiation-induced damage.
- **Goal**: Shift from image-guided dosimetry to computer-assisted dosimetry to optimize dose delivery and minimize off-target exposure
- Future horizon: Shift to AI-guided therapy

Telix's MedTech offering enhances diagnostic and therapeutic radiopharmaceuticals

Dosimetry: Is there enough dose in the tumor/lesions to be effective? Is the dose to healthy tissues minimized for acceptable safety profile?

1. Nat Rev Clin Oncol 19, 534–550 (2022). https://doi.org/10.1038/s41571-022-00652-y


Quantitative intelligence for drug design and adaptive therapy

Optimizing the diagnosis-therapy chain through quantitative feedback and learning¹

Disease Detected²

Proprietary know-how, algorithms

Personalized Treatment

Telix

Yasdani et al. Diagnostics (Basel). 2024

Sequential dosing with ²²⁵Ac-DOTATATE.Imaging with ⁶⁸Ga-DOTANOC PET. Redrawn from Ballal, et al. J Nucl Med. 2023, 64: 211-218. Patient representative scans – individual results may vary. Cell dosimetry image redrawn from Sgouros, et al. 2020 Nat. Rev. Drug Discovery 19 589-608.

Precision Medicine

Kevin Richardson CEO, Precision Medicine

Commercial performance

lelix

Driven by Illuccix sales and RLS Radiopharmacies revenue

- Illuccix now approved in 17 countries¹
- Gozellix now available in the U.S.
- Q1 2025: Continued growth: \$151 million from global sales of Illuccix:
 - up 35% over the prior year corresponding quarter (Q1 2024: \$112 million)
 - QOQ increase of 9% (Q4 2024: \$139 million)
- \$33 million from RLS Radiopharmacies (excluding Illuccix sales) since 27 January 2025

1. U.S., Canada, Australia, New Zealand, Brazil, UK, Czech Republic, Ireland, Malta, Luxembourg, Netherlands, France, Denmark, Finland, Sweden, Portugal and Germany. Note: Historical results above recast to US\$ are provided on an unaudited basis and are for comparative purposes only. Refer to ASX and SEC announcement in respect of Telix's Q1 2025 revenue, 22 April 2025.

Precision medicine growth strategy

We are proactively expanding our global market opportunity

Expand product offerings Cozelling kit for the preparation of gallium Ga 68 gozetotide injection Kit for the preparation of gallium (Boretyrosine F18) Cozelling (Boretyrosine F18)

- Launch Zircaix and Pixclara in the U.S.
- Use AI to increase patient throughput
- Ongoing innovation and life cycle management strategy in PSMA

Expand geographies

- Illuccix global rollout
- Global regulatory filings for Zircaix, Pixclara and Gozellix in planning

Expand indications

- Label expansion studies in planning for prostate, kidney, and brain cancer imaging
- Expands clinical utilization and label indications

Commercial delivery

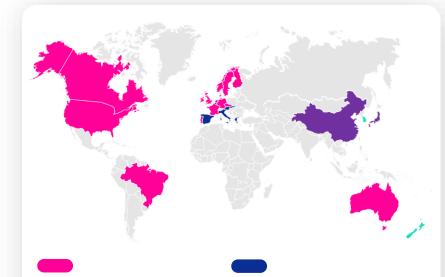
Leading specialist commercial teams

Tailored commercial playbook for each market

Underpinned by Telix reputation for innovation, service, and reliability

Zircaix and Pixclara brand names subject to final regulatory approval. All logos are registered trademarks of Telix.

Precision medicine portfolio


Expanding commercial portfolio

	Targeting agent	Isotope	Pre-clinical Phase 1 Phase 2 Phase 3 Commercial
Prostate PSMA	Small molecule	⁶⁸ Ga	Illuccix® (⁶⁸ Ga-PSMA-11)
	Small molecule	⁶⁸ Ga	Gozellix® (⁶⁸ Ga-PSMA-11)
Kidney + other CAIX Antibody Image: Brain LAT Small molecule		⁸⁹ Zr	TLX250-CDx, Zircaix® ¹ (⁸⁹ Zr-girentuximab)
		¹⁸ F	TLX101-CDx, Pixclara®1 (18F-floretyrosine)
Musculo- skeletal	Antibody	^{99m} Tc	TLX66-CDx (^{99m} Tc-besilesomab, Scintimun®), CD66 imaging agent for osteomyelitis (bone infection)

Illuccix global rollout

Commercialization and marketing authorizations progressing in major global markets

Marketing authorization granted in Australia, Brazil, Canada, France, Germany, UK, U.S. and 10 additional EEA Member States

Sale allowed under special

Zealand

exemption in Korea and New

Local marketing authorization approvals being implemented in 6 EEA member states

Late-stage clinical programs in China and Japan

1. Telix ASX disclosure 17 January 2025.

- . Telix media release 29 April 2025.
- . Telix media release 5 June 2025.
- Telix ASX disclosure 13 February 2025.
- 5. Czech Republic, Denmark, Finland, Ireland, Luxembourg, Malta, the Netherlands, Norway, Portugal and Sweden at time of release.

Europe Middle East and Africa:

- Decentralized submission approved by BfArM as Reference Member State for European Economic Area (EEA) Concerned Member States¹
- Marketing Authorizations granted in France², Germany³, the United Kingdom⁴ and 10 additional EEA member states⁵

Asia Pacific:

- Phase 3 registration study in China complete⁶, preparing NDA
- Phase 3 registration study in Japan initiating

Americas:

- FDA approved label in U.S. expanded to include patient selection for pre-taxane radioligand therapy (RLT)
- Marketing Authorization granted in Brazil⁷, the first full MA for PSMA-PET in Latin America
 - 6. Telix media release 13 May 2025.
 - 7. Telix ASX disclosure 18 March 2025.

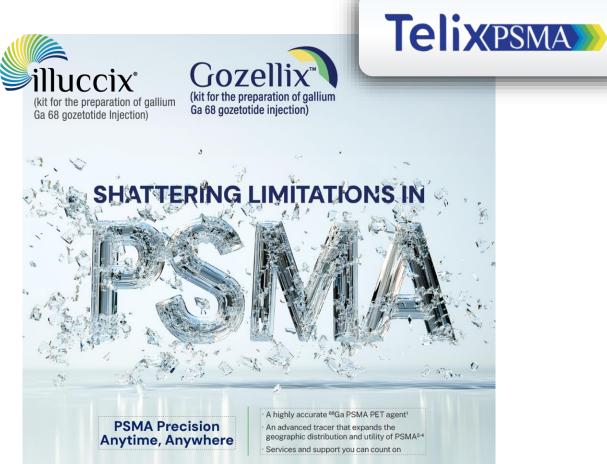
Expanding our addressable market through clinical leadership

Planned label expansion studies across the portfolio

	Study name	Focus	Potential outcomes
8	PSMA PET for diagnosis of prostate cancer	Ph 3 study of PSMA PET + MRI compared to SOC for the detection of prostate cancer	Personalize biopsyRemove the need to biopsy
Gið	Zirmet study	Assess diagnostic performance of TLX250-CDx in ccRCC ¹ patients suspected of recurrence based on conventional imaging	Detection of ccRCC recurrence and oligometastatic disease
	TLX101-CDx brain metastasis study	Assessing how accurately ¹⁸ FET PET identifies treatment-related changes without incorrectly classifying as tumor progression	 Address a gap in current diagnosis for brain metastasis Label expansion beyond glioma only

Our strategy to build a leading PSMA imaging portfolio

Underpinned by a commitment to innovation to better serve patients and customers

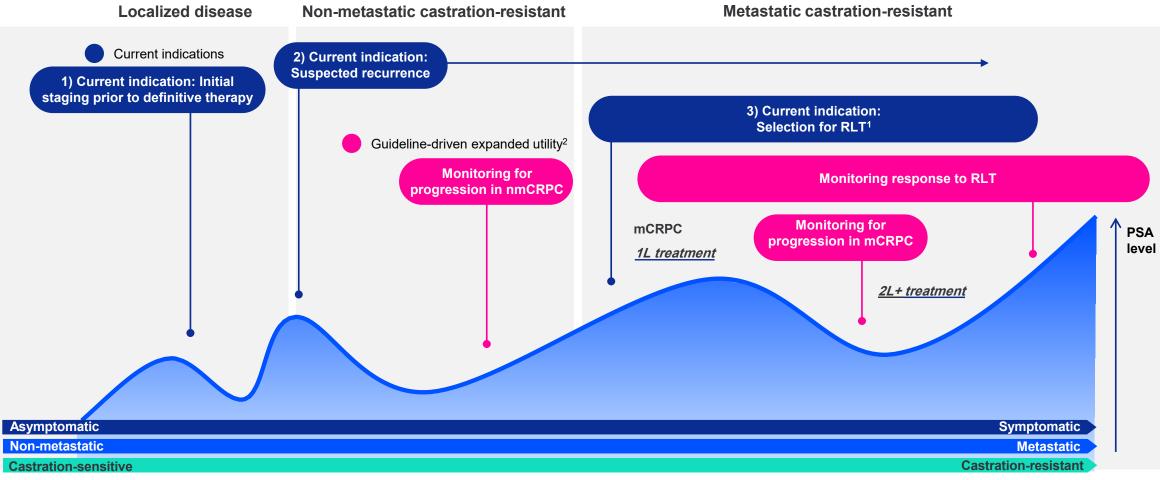


1. Subject to favorable clinical trial results and regulatory approval. Refer to slide 33 for addressable market breakdown

Telix PSMA multi-product strategy

Gozellix next-generation in PSMA imaging excellence

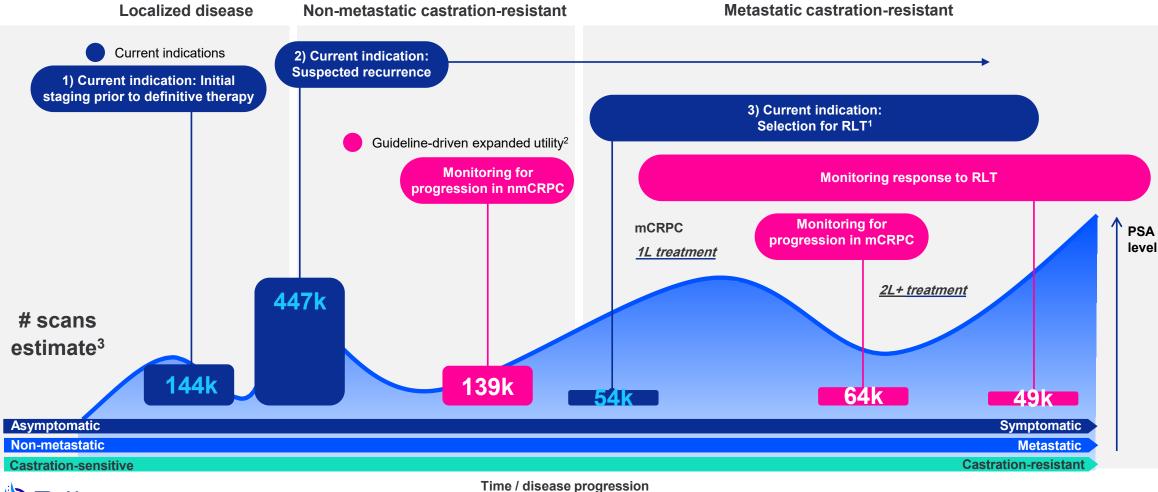
- Telix has built a reputation for industry leading reliability, flexibility and service, AND clinical accuracy
- Gozellix further differentiates Telix as the only provider with two FDA-approved PSMA-PET imaging agents
- Expands patient reach and customer choice
- Higher-activity kit allows for enhanced availability, scheduling flexibility and workflow



Sample U.S. campaign for U.S. approved product, intended for U.S. healthcare professional audience only. Registrations vary country to country, always refer to local label and approval status. Gozellix is not currently approved in any country outside of the U.S.

PSMA imaging today, a \$2.5B to \$3.5B addressable market

Driven by current label indications and guidelines

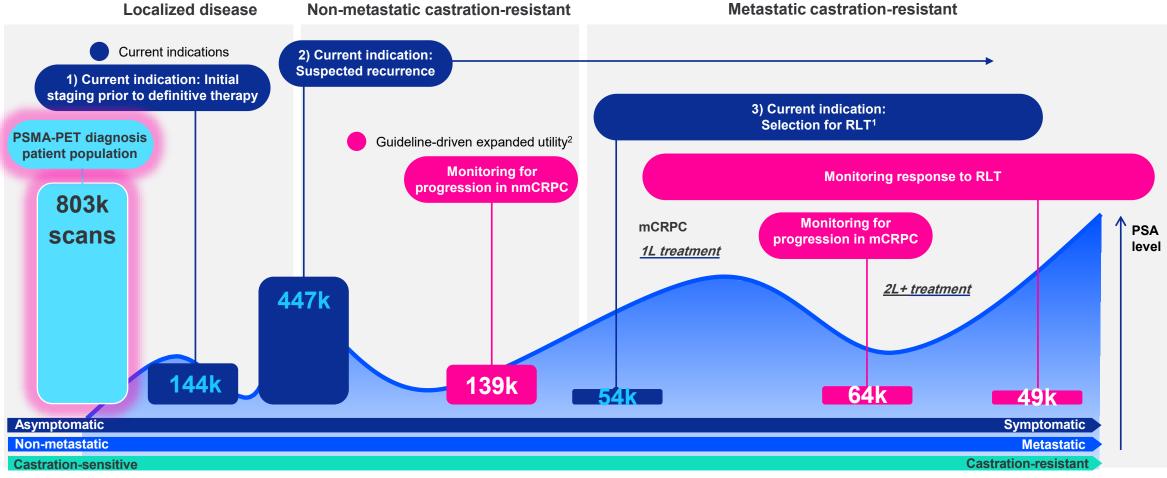


Radioligand therapy.
 Based on current guidelines

Time / disease progression

Most PSMA scans are performed when recurrence is suspected

PSA test, followed by MRI, biopsy is the standard for diagnosis


1. Radioligand therapy.

2. Based on current guidelines.

3. Potential number of scans per year in U.S.

Expansion into diagnosis enhances the opportunity

PSMA-PET with the patient at the start of their diagnosis journey

()) Telix

Radioligand therapy.
 Based on current guidelines.

Time / disease progression

New and guideline-driven indications for PSMA imaging

Potential to bring the total addressable market up to ~\$6.7 billion in the U.S.

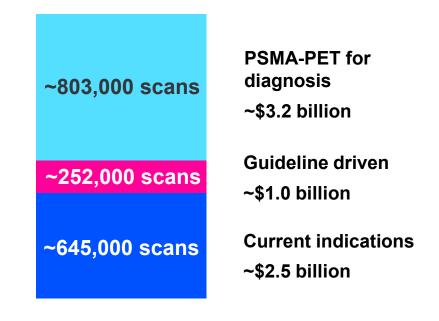
New indication (subject to FDA approval)

PSMA-PET for diagnosis (PI-RADS⁴ scores 2-4) ٠

Guideline driven indications

- Monitoring response to radioligand therapy •
- Monitoring for progression in nmCRPC¹ and mCRPC² (AUA)³ •

Current indications

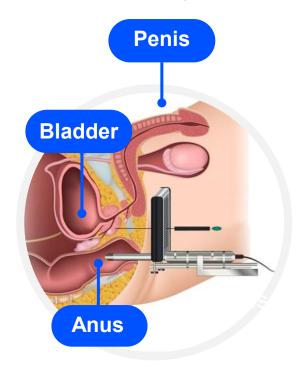

- Initial staging for suspected metastases (NCCN⁵, AUA)
- Suspected recurrence (NCCN, AUA)
- Patient selection for RLT⁶ (NCCN, AUA)

- Non-metastatic Castration-Resistant Prostate Cancer
- Metastatic Castration-Resistant Prostate Cancer
- American Urological Association

Prostate Imaging Reporting and Data system

Estimated annual scans in the U.S. to reach ~1.7 million scans with a total addressable market of \$6.7 billion⁷

5. National Comprehensive Cancer Network.


Based on licensed indication for 177Lu-PSMA-617, Pluvicto, a registered trademark by Novartis AG, in 6. mCRPC patients who have been treated with androgen receptor (AR) pathway inhibition.

7. Based on a price of USD 4,000 per scan.

Over one million men get a biopsy every year

"The most disruptive and transformative advancements in medicine are those that minimize patient trauma, reduce recovery time and lower cost while improving outcomes" – *John Abele, Founder Boston Scientific*

Transperineal biopsy

Intravenous injection

Patient representative scan – individual results may vary.

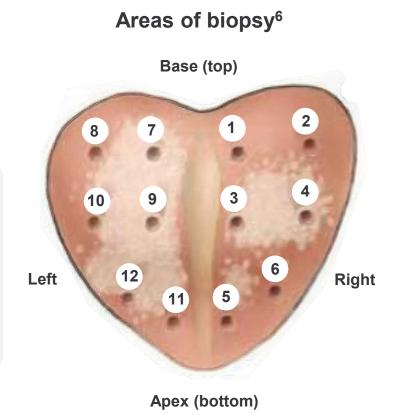
Unmet need: Improving the diagnostic pathway in prostate cancer

Opportunity to improve accuracy, minimize invasive biopsy

Men with elevated PSA values will often be recommended for MRI¹, followed by biopsy

• MRI is not specific and often inconclusive, leading to biopsy

Over 1M biopsies performed in the U.S. each year, majority for initial diagnosis, up to 75% are negative²


- Biopsy is blind to the location of cancer in the prostate
- Only 50% of biopsies successfully retrieve prostate tissue (false negatives)³

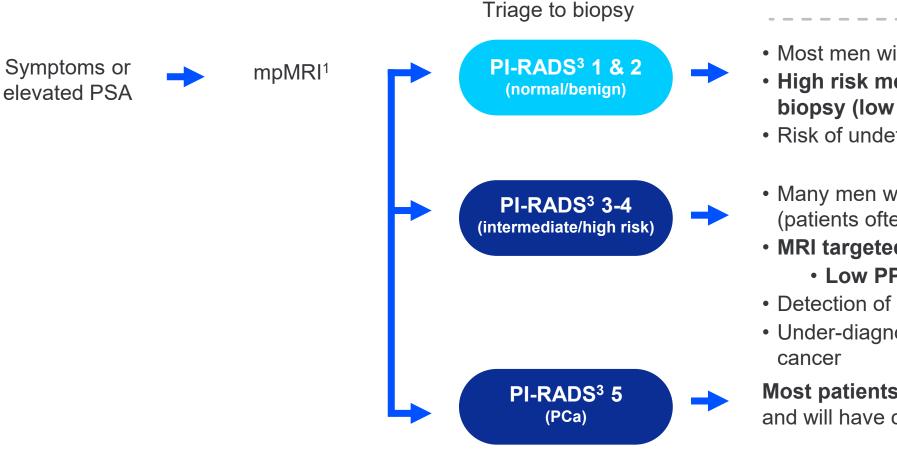
Biopsies carry real risks⁴

- Hematuria, rectal bleeding, hematospermia
- Inconsistent practice around anticoagulants adds complexity

Up to 25% of patients refuse a recommended biopsy⁵

- Reasons for refusal include fear or pain of complications
- Skepticism about the necessity of the procedure

- 2. Vickers et al. *J Clin Oncol.* 2010.
- 3. Ahmed et al. *Lancet.* 2017.


- 5. Filho et al., 2025.
 - . Picture credit: Georgia Radiation Therapy.

^{1.} Magnetic resonance imaging

^{4. &}lt;u>https://www.researchgate.net/figure/Complications-of-transrectal-ultrasound-guided-prostate-biopsy_tbl1_10978264</u>

Current diagnosis pathway

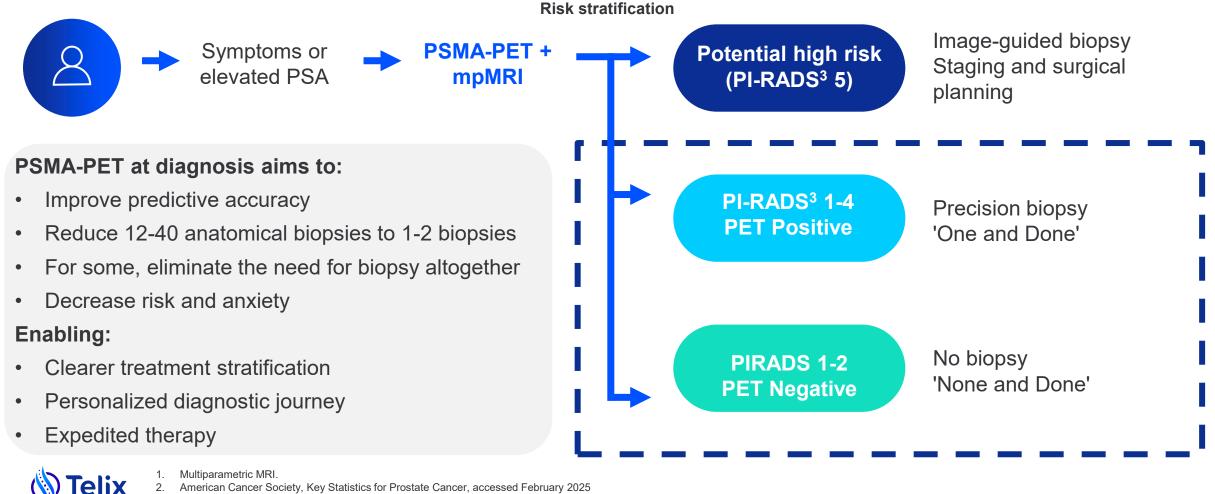
Low sensitivity of MRI leads to high rate of biopsy

Opportunity to improve triage prior to biopsy, and accuracy of biopsy procedure

- Most men will not undergo biopsy
- High risk men may have a template biopsy (low sensitivity)
- Risk of undetected prostate cancer
- Many men will undergo biopsy (patients often decline)
- MRI targeted/ template biopsy
 Low PPV, moderate sensitivity
- Detection of indolent prostate cancer
- Under-diagnosis of clinically significant cancer

Most patients will receive a biopsy

and will have clinically significant cancer



- . Multiparametric MRI.
- American Cancer Society, Key Statistics for Prostate Cancer, accessed February 2025.

Prostate Imaging Reporting and Data System, a scoring system used by radiologists to assess the likelihood of prostate cancer based on multiparametric mpMRI findings.

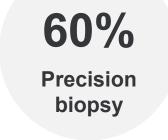
A personalized diagnostic pathway with PSMA-PET

Smarter triage BEFORE biopsy. Integrating imaging WITH biopsy.

 American Cancer Society, Key Statistics for Prostate Cancer, accessed February 2025
 Prostate Imaging Reporting and Data System, a scoring system used by radiologists to assess the likelihood of prostate cancer based on multiparametric mpMRI findings.

A patient's journey

1990 - 2025


Multiple biopsies until cancer is detected

2026 & beyond

No biopsy or precision biopsy

40% No biopsy

Zircaix: Adding depth to our commercial focus on urology

TLX250-CDx (Zircaix): Highly accurate in detecting ccRCC

Phase 3 ZIRCON trial validates CAIX as a novel target¹

Product candidate

TLX250-CDx (⁸⁹Zr-DFO-girentuximab) FDA Breakthrough Therapy designation²

Targeting molecule / target

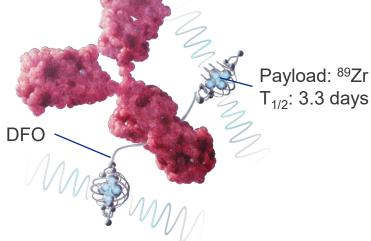
Antibody / Carbonic anhydrase IX (CAIX)

Indication Clear cell renal cell carcinoma

Clinical experience to date

Demonstrated accuracy and favorable safety profile in Phase 3 ZIRCON study and real-world cases³

PET/CT imaging accurately detected ccRCC in patients with cT1 IRM (≤7cm), demonstrating a mean sensitivity of 86%, specificity of 87% and positive predictive value of 93%


BLA under FDA review Expanded access program active in the U.S.

Upcoming milestones

PDUFA date 27 August 2025

Linker: DFO

Professor Brian Shuch, MD,

Director of the Kidney Cancer Program and the Alvin & Carrie Meinhardt Endowed Chair in Kidney Cancer Research at UCLA Institute of Urologic Oncology

"The challenges and uncertainty in diagnosing ccRCC underscore a critical unmet need for a new, non-invasive technique that accurately detects and differentiates ccRCC from other renal masses in patients, to inform clinical decision making. The ZIRCON trial has shown that TLX250-CDx is a breakthrough technology that can address this need."

A clear value proposition in the diagnosis of ccRCC¹

Unmet need

- Conventional imaging (CT, MRI, ultrasound) is limited in characterizing tumor malignancy and identifying (ccRCC)
- Unnecessary surgeries (nephrectomies) and invasive medical procedures (biopsies) are being performed, *up to 1/3 of resected small renal masses are benign*²

Zircaix PET positive

- Peer reviewed data suggests that Zircaix imaging could quickly characterize ccRCC in the assessment of indeterminate renal tumors, **reducing time to diagnosis**
- Goal is for physicians to have the confidence that surgery is performed in the right patients, reducing the number of unnecessary surgeries

Shuch et al. Lancet Oncol. 2024.

Zircaix PET negative

- Data suggests that biopsies and further imaging are only needed for patients with Zircaix PET-negative imaging – a smaller patient group after eliminating ccRCC from diagnosis
- Suggests lower probability of aggressive disease in this patient group

Kim JH, et al. JAMA Surg. 2019.
 Zircaix brand name subject to final regulatory approval.
 ccRCC, clear cell renal cell carcinoma; MRI, magnetic resonance imaging; PET, positron emission tomography.

Telix's commitment to renal cancer patients

Aiming to transform the management of patients with ccRCC

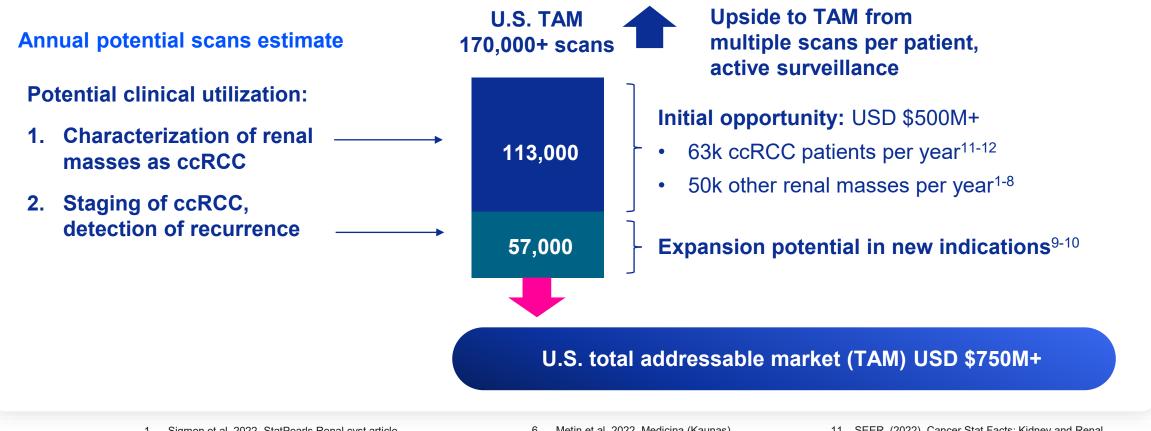
Enable

TLX250-CDx (Zircaix) is a first-in-class, radiodiagnostic agent for the diagnosis and characterization of ccRCC

Grow

Increase adoption and market opportunity through guideline inclusion, label expansion studies

Transform

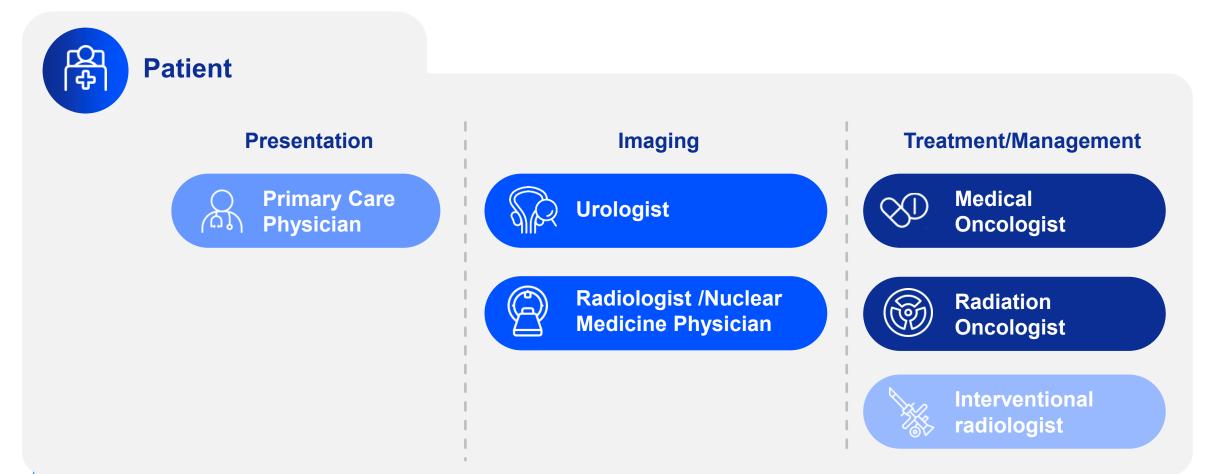

To other carbonic anhydrase IX (CAIX) expressing cancers harnessing data generated from current ongoing studies

Market opportunity for diagnosis of ccRCC

\$500M+ initial U.S. opportunity, further expansion potential in staging and recurrence

- Sigmon et al. 2022, StatPearls Renal cyst article.
- Garfield et al. 2022, StatPearls Simple Renal Cyst Article; Tay et al. 2018 JCMA
- Cancer.Org, Kidney Cancer Key Statistics.
- Escudier et al. 2019, Annals of Onc; ESMO guidelines RCC.
- Mittal et al. 2016, Ind J Rad Img.

- Metin et al. 2022, Medicina (Kaunas). 6.
- 7. Tshering Vogel et al. 2021, Urology; Di Vece et al. 2016, Ultrasound.
- 8 Vasudev et al. 2020, BMJ.
- Pharmintelligence RCC Accessed January 2024. 9
- 10. Hollenbeak et al. 2019. BMC Urology.


11. SEER. (2022). Cancer Stat Facts: Kidney and Renal Pelvis Cancer:

https://seer.cancer.gov/statfacts/html/kidrp.html.

- 12. STATPEARLS Rahul D. Arora 2020:11(3):79-87.
- * Subject to regulatory approval

Building on proven success: Elevating value in urology care

Zircaix, Illuccix and Gozellix share common referral stakeholders

KOL perspective: Renal

Joseph Osborne, MD

Chief of Molecular Imaging and Therapeutics and Professor of Radiology at Weill Cornell Medicine

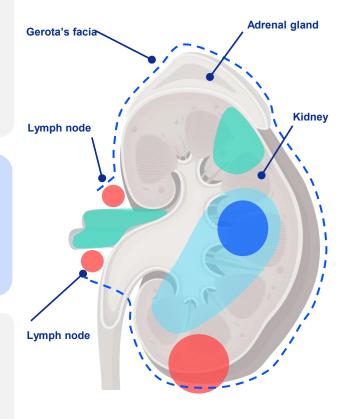
Unmet need in diagnosis of ccRCC

The most common – and one of the most aggressive – forms of renal cancer

Need for early & accurate diagnosis / treatment

- Up to 85% of RCCs are ccRCC^{1,2}
- ccRCC causes ~90% of deaths of all RCC^{3,4}
- For patients with small renal masses on active surveillance, ccRCC subtype reported to progress most rapidly⁵

Limitations of renal biopsy


- Non-diagnostic, 10-15%
- Invasive, related risks
- Sampling error, 70% NPV⁶

Limitations of anatomic imaging (CT, MRI)

 Cannot reliably distinguish benign vs malignant

Risk of overtreatment & related complications

- Up to 30% resected small renal masses found to be benign⁷
- 30% complication rate of partial nephrectomy in these patients⁸

Stage

Tumor <7 cm in greatest dimension and limited to kidney; 5-year survival, 95%

Stage II

Tumor >7 cm in greatest dimension and limited to kidney; 5-year survival, 88%

Stage III

Tumor in major veins or adrenal gland, tumor within Gerota's fascia, or 1 regional lymph node involved: 5 year survival, 59%

Stage IV

Tumor beyond Gerota's fascia, or >1 regional lymph node involved: 5 year survival, 20%

ccRCC, clear cell Renal Cell Carcinoma; CT, computed tomography; MRI, magnetic resonance imaging; NPV, negative predictive value; RCC, Renal Cell Carcinoma. 1. Qi X, et al. *Front Oncol*. 2021;11:727778. 2. Alchahin AM, et al. *Nat Commun*. 2022;13(1):5747. 3. Abu Haeyeh Y, et al. *Bioengineering (Basel)*. 2022;9(9). 4. Metin M, et al. *Medicina (Kaunas)*. 2022;58(2). 5. Finelli A, et al. *Eur Urol*. 2020;78(3):460-467. 6. Patel HD, et al. *J Urol*. 2016;195(5):1340-1347. 7. Oei T, et al. *Imaging in Medicine*. 2011;3(2):207-218. 8. Baio R, et al. *Diseases*. 2023;11(1):27.

Small renal masses (<2cm) are often malignant¹

Risk statistics by tumor size (in 1cm increments)

Benign vs. Malignant

1. Thompson, J.H. et al., (2009). *J Urol* Benign tumors vs RCC according to size in patients treated surgically for renal mass

Size (cm)	Benign (%)	RCC (%)
< 1	6 (37.5)	10 (62.5)
1 to < 2	56 (19.2)	236 (80.8)
2 to < 3	77 (16.5)	391 (83.5)
3 to < 4	58 (13)	390 (87)
4 to < 5	30 (8.7)	315 (91.3)
5 to < 6	23 (10)	206 (90)
6 to < 7	13 (6.6)	183 (93.4)
7 or > 8	48 (7.1)	633 (92.9)

Low vs. High Grade

Low vs high grade tumors in 1,523 patients treated surgically for clear cell RCC

Size (cm)	Low grade (%)	High grade (%)		
< 1	6 (100)	0		
1 to < 2	138 (84)	26 (16)		
2 to < 3	206 (83)	43 (17)		
3 to < 4	177 (73)	65 (27)		
4 to < 5	131 (67)	64 (42)		
5 to < 6	83 (58)	49 (42)		
6 to < 7	81 (62)	49 (38)		
7 or > 8	163 (41)	232 (59)		

TLX250-CDx: Highly accurate in detecting ccRCC¹

Phase 3 ZIRCON trial validates CAIX as a novel target

⁸⁹Zr-girentuximab

- IgG1 CAIX-targeting mAb
- **Payload:** ⁸⁹Zr, positron emitter with T_{1/2} 3.3 days
- Hepatically cleared
- Demonstrated accuracy and favorable safety profile in Phase 3 ZIRCON study and real-world cases²

THE LANCET Oncology

"As PET–CT imaging with PSMA revolutionized the management of prostate cancer, imaging using TLX250-CDx has the potential to change clinical practice in renal cell carcinoma."

Sensitivity & specificity Sensitivity: 86% | Specificity: 87% (primary endpoints: n=284) ≤4 cm (n=145) Sensitivity & • Sensitivity: 85% specificity of small Specificity: 90% lesions ≤2 cm (n=20) Sensitivity: 97% Specificity: 97% The Fleiss' k statistic for inter-reader **Reader agreement** variability: 91% Cohen's κ statistic for intrareader variability: 100% for each reader **Favorable profile indicated** Safety & tolerability

ZIRCON study results summary

CAIX, carbonic anhydrase IX; ccRCC, clear cell renal cell carcinoma; mAb, monoclonal antibody; PET, positron emission tomography; rADC, radio antibody-drug conjugate; T_{1/2}, half-life.

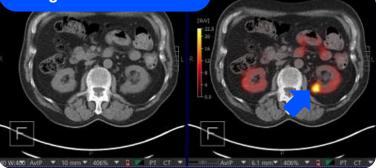
TLX250-CDx: Expanded access program

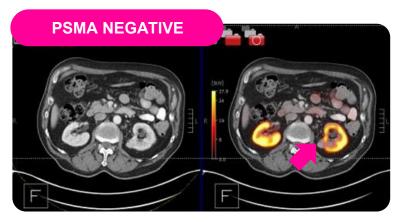
Case study: Clinical utility in real-world setting

Clinical background:

History of prostate cancer with XRT 2017, recurrence in many nodes in 2020 N2M1a - on ADT and darolutamide

PSMA PET/CT show lesion in kidney (NOT PSMA AVID)


- Found incidental 3 cm mass in left kidney during PSMA scan for evaluation of metastatic prostate cancer
- Additionally found 1.8 cm bosniak 3 renal lesion in left kidney


Patient desired to watch lesion unless we felt it could be aggressive tumor

Plan was to repeat scan in 6 months but received ⁸⁹Zr-girentuximab through EAP

Positive ⁸⁹Zr-girentuximab scan Outcome: Management change Patient proceeded with ablation for 3 cm mass; Bosniak 3 lesion was not avid

⁸⁹Zr-girentuximab AVID

Illustrative case study only. Individual outcomes may vary.

Case study: ~1cm renal lesion

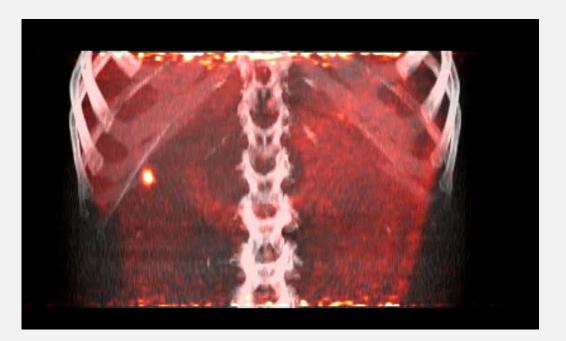
Detection of small ccRCC renal lesions

Clinical background

- 40-yr-old male with
 1.2cm renal lesion
- PET positive ccRCC
 highly likely
- Similar sized cyst negative for uptake
- Partial nephrectomy
- ccRCC confirmed (T1a stage)

Right superior kidney

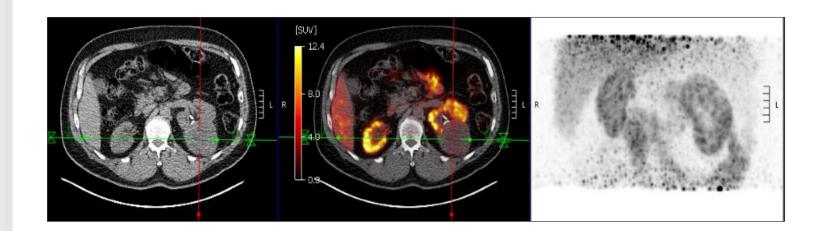

PET positive patient


Diagnostic CT

Fused PET/CT

Fused MIP

Illustrative case study only. Individual outcomes may vary.



Note: representative patient response only, may not be representative for all patients. Images are from Ph 3 ZIRCON trial. ccRCC = clear cell Renal Cell carcinoma, MIP = Maximum Intensity Projection

Case study: Negative TLX250-CDx case

Detection of absence of ccRCC

- Negative ⁸⁹Zrgirentuximab molecular imaging suggests benign or nonccRCC
- CAIX IHC staining confirms absence of ccRCC

6 cm Oncocytoma CA-IX PET negative – CA-IX IHC negative

Illustrative case study only. Individual outcomes may vary.

Scintimun: Scintigraphic imaging of osteomyelitis

Approved and marketed in over 30 countries in Europe and Rest of World

Product candidate

^{99m}Tc-besilesomab, also known as TLX66-CDx

Targeting molecule / target

Antibody / cluster of differentiation 66

Indication

Approved for imaging osteomyelitis (bone infection) Future use as companion patient selection and safety assessment tool for TLX66 (⁹⁰Y-besilesomab)

Clinical experience

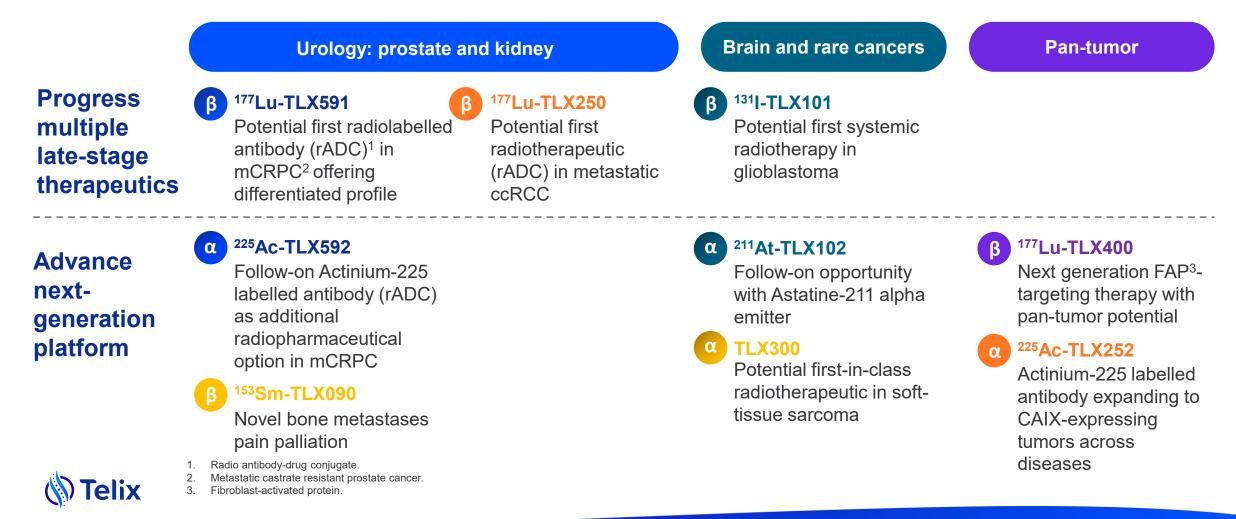
Approval based on Phase 3 clinical trial in 22 European centers demonstrating accuracy and tolerability in the diagnosis of peripheral bone infections

Product status

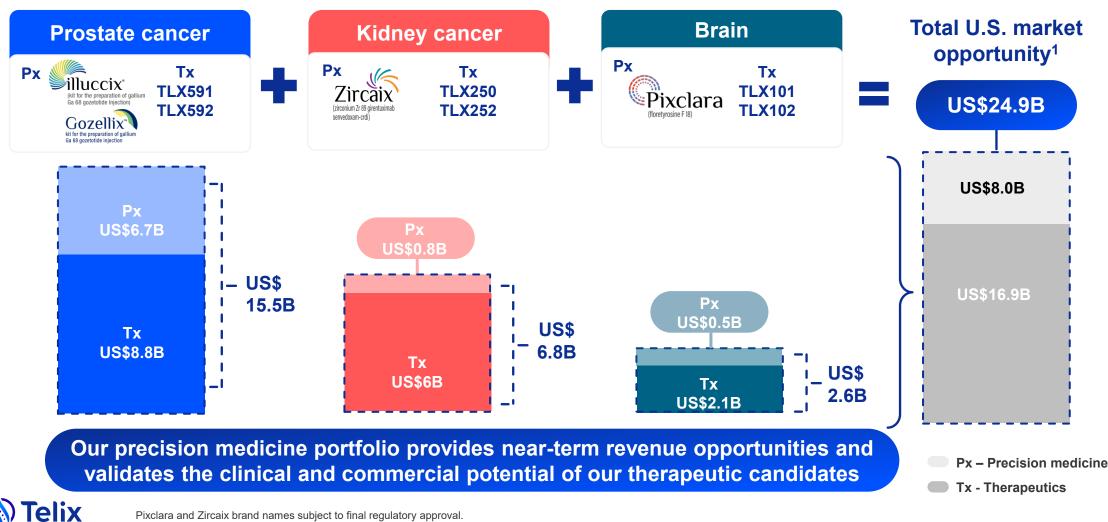
Marketing authorization granted in Europe / Rest of World (33 countries) U.S. market feasibility assessment underway for several high-value indications

> Payload: ^{99m}Tc T_{1/2}: 6 hours \

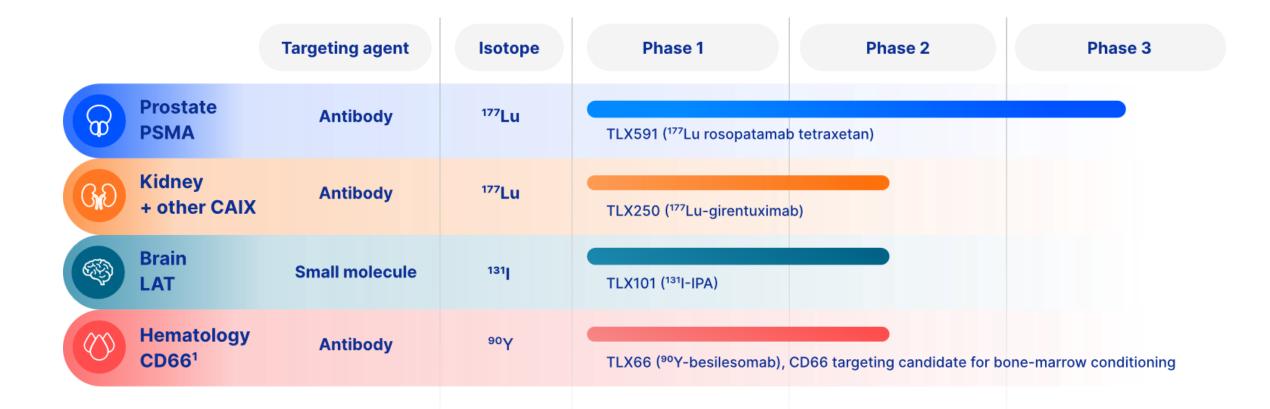
Therapeutics


Richard Valeix CEO, Therapeutics

Therapeutics strategy: Building pipeline depth and breadth


Aiming for three pivotal stage assets, advancing next-gen products to expand opportunity

55


Expanded opportunity across the pipeline

High unmet medical need, significant potential value creation

Pixclara and Zircaix brand names subject to final regulatory approval. 1. Management estimate for 2025 based on latest incidence and pricing models.

Late-stage pipeline

Telix

Early-stage pipeline

"Next generation" products

	Targeting agent	Isotope	R&D	Pre-clinical	Clinical (Ph 0/1)
Prostate PSMA	Antibody	²²⁵ Ac (alpha)	TLX592 (²²⁵ Ac-RADmAb®)		
Go Kidney + other CAIX	Antibody	²²⁵ Ac (alpha)	TLX252 (225Ac-girentuxim	ab)	
Bladder FAP	Small molecule	Undisclosed	TLX400 (New in-license)		
Brain LAT	Small molecule	²¹¹ At (alpha)	TLX102 (²¹¹ At-APA)		
Musculo- skeletal	Antibody	Undisclosed	TLX300 (-olaratumab), PD	GFRα ¹ targeting candidate for s	oft tissue sarcoma
	Small molecule	¹⁵³ Sm	TLX090 (¹⁵³ Sm-DOTMP), k	oone-seeking agent for bone me	etastases and pain palliation

Momentum across the therapeutics pipeline

Upcoming catalysts

Urologic oncology:

Innovation across multiple therapeutic settings

TLX591: First-in-class rADC for advanced prostate cancer

A differentiated approach in the emerging field of PSMA therapy

Product candidate

TLX591 (¹⁷⁷Lu-rosopatamab tetraxetan)

Targeting agent / target

Antibody /

Prostate-specific membrane antigen

Indication

Metastatic castrate-resistant prostate cancer (mCRPC)

Clinical experience to date

- 242 pts, 8 Phase 1 and 2 trials¹
- ProstACT Select study demonstrated safety profile and biodistribution²
- Encouraging efficacy signal
 - Median rPFS 8.8 mos³

Clinical trials

ProstACT

- Phase 3 ProstACT Global trial dosing patients in ANZ and U.S.
- ClinicalTrials.gov ID: <u>NCT06520345</u>

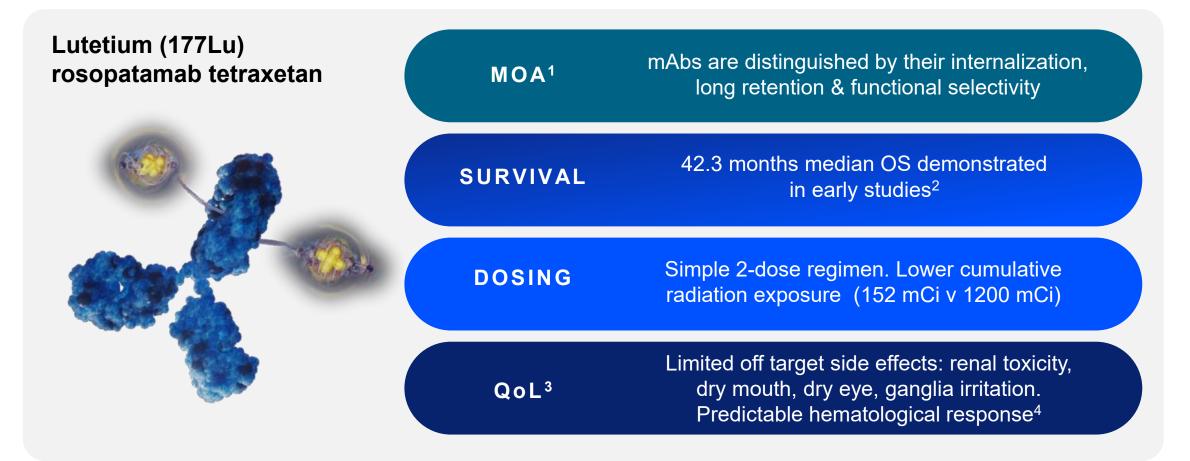
Upcoming milestones

• ProstACT Global Part 1 interim readout (safety and dosimetry)

Scott T. Tagawa, MD Professor of Medicine and Urology, Weill Cornell Medicine (NY) "Latest data provides further evidence of the long retention and internalization of TLX591 in the tumor (and metastases), which may maximize the cell-killing effect of the 177Lu radioisotope at the site of the tumor."

Linker: DOTA

Bander et al. J Clin Oncol. 2005; Tagawa et al. Clin Cancer Res. 2013; Tagawa et al. Cancer. 2019; Batra et al. Urol Oncol. 2020; Niaz et al. Oncologist. 2020.
 Telix ASX disclosure 19 October 2023. ClinicalTrials.gov ID: <u>NCT04786847</u>

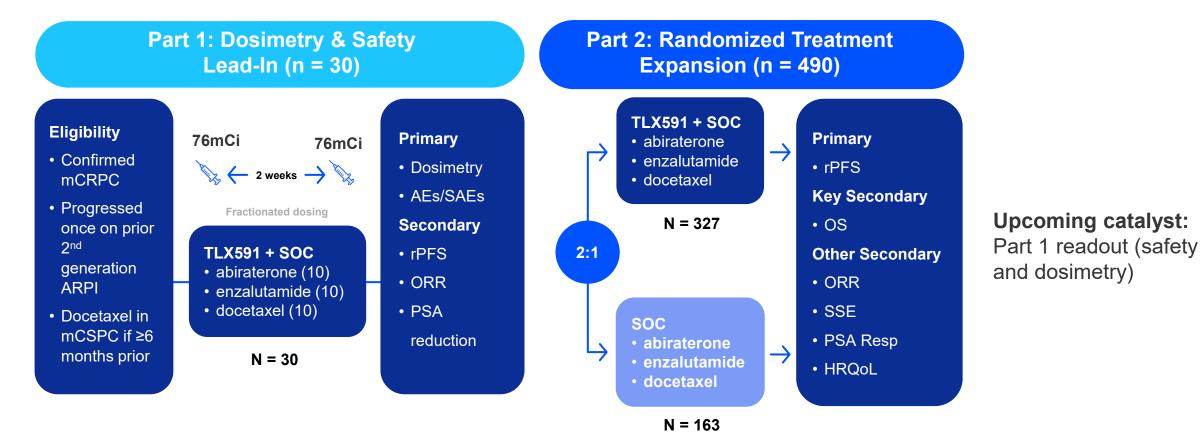

3. Telix ASX disclosure 31 May 2024.

Payload: 177Lu

T_{1/2}: 6.7 days

TLX591: Novel PSMA therapy addressing key unmet needs

Potential to overcome limitations of small molecule approach


. Mechanism of action.

- 2. Tagawa, et al. Cancer. 2019 (Open label, single-arm Phase 1/2 clinical trial in 17 patients with advanced mCRPC).
- Quality of life.
- ProstACT SELECT data on file.

ProstACT Global trial¹

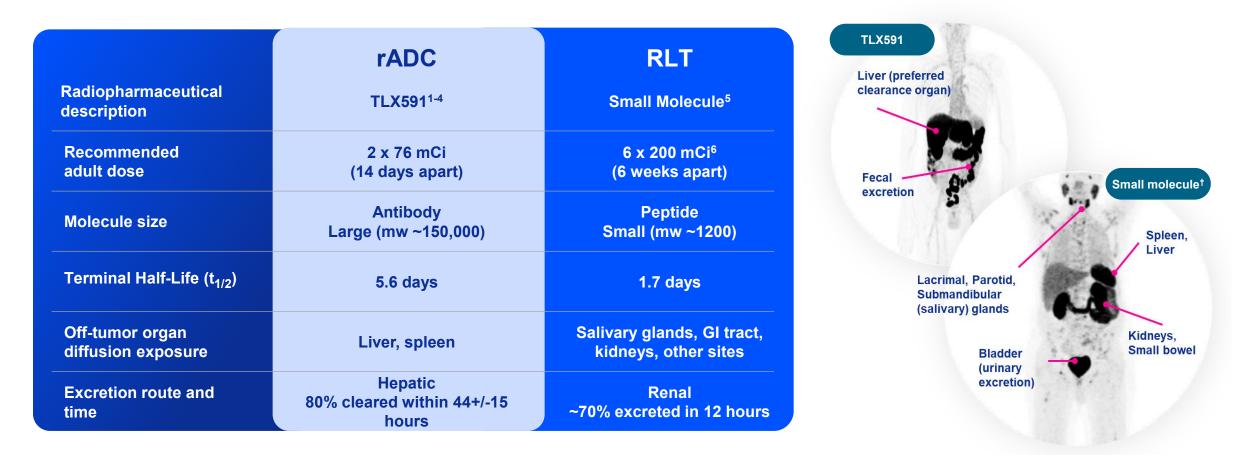
Design and status update

Interim Analysis

Characterize biodistribution & safety profiles of TLX591 + SOC combinations

KOL perspective: TLX591

Oliver Sartor, MD


Director of Transformational Prostate Cancer Research LCMC Hospitals, New Orleans, LA

TLX591 rADC vs small molecule RLT characteristics

Key differences underpin PSMA tumor targeting, internalization, retention

rADC = radio-Antibody Drug Conjugate, RLT = Radio-ligand therapy, PSMA = Prostate specific membrane antigen, mw = molecular weight, GI = gastrointestinal 1. Sartor O, et al. Presented at: American Society of Clinical Oncology Annual Meeting; May 31-June 4, 2024; Chicago, IL. TPS5115. 2. Sun M, et al. *Curr Oncol Rep.* 2021;23(5):59. 3. Data on file. Telix Pharmaceuticals Limited. 4. Tagawa ST, et al. *Cancer*. 2019;125(15):2561-2569. 5. Lu177-PSMA617. Prescribing information. 2022. Novartis Pharmaceuticals Corp. 6. 177Lu-PSMA-617 prescribing information. Administered every 6 weeks for up to 6 treatments, solution for injection contains 200 mCi (7.4 GBq) at time of use.

Patient pain points and unmet needs

TLX591 has the potential to overcome current challenges

Patient burden

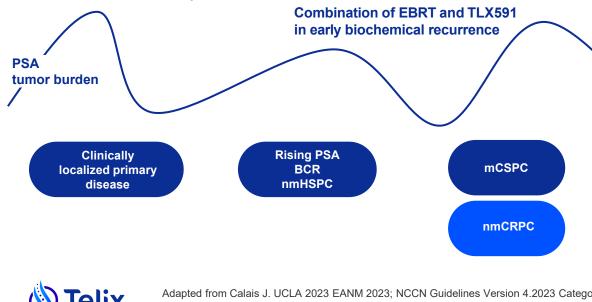
6 infusions over 30 weeks \rightarrow **Clinical burden**

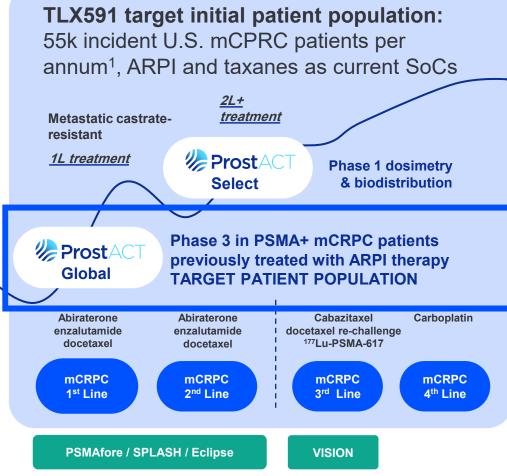
High off-target organ diffusion → **Dry mouth, renal toxicity**

Emerging PSMA RT standard of care (¹⁷⁷Lu-PSMA-617) still leaves room to improve efficacy, tolerability, & dosing regimen Why TLX591? Three core differentiators

2-dose regimen (14 days apart) reduces clinic visits Hepatic clearance avoids renal dosimetric problems

Antibody avoids salivary gland uptake

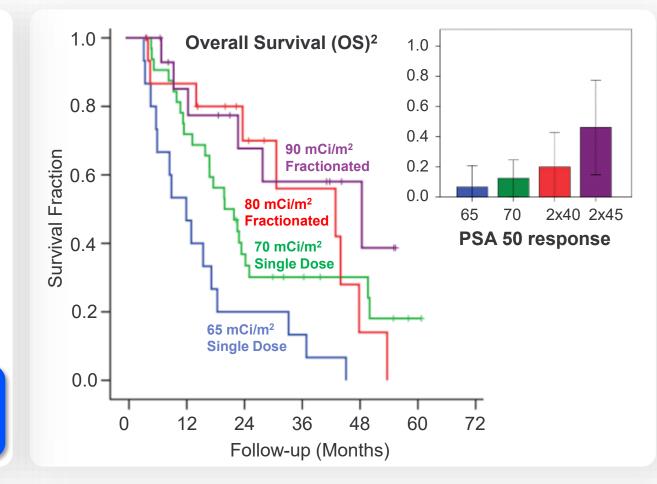

TLX591 targeting unmet needs for mCRPC patients


Hormone sensitive

Castration resistant

¹⁷⁷Lu-PSMA-617 peptide therapy approved but ...

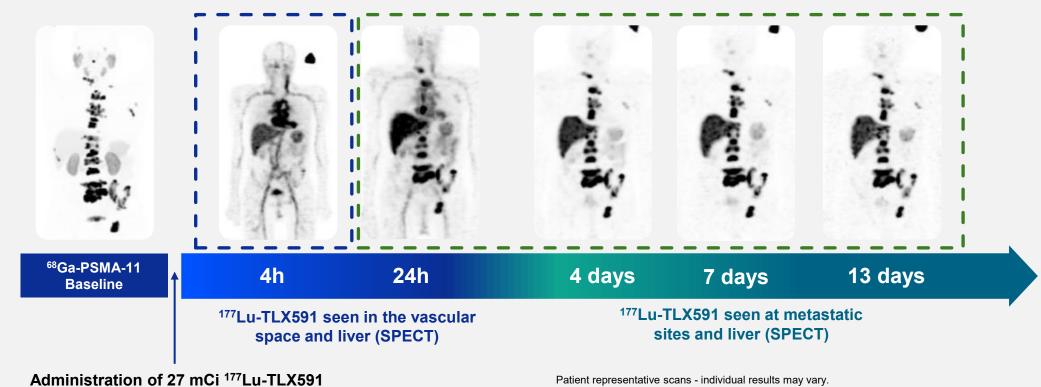
- Opportunity to improve on efficacy
- Opportunity to reduce off-target organ diffusion to improve tolerability
- Opportunity to improve patient dosing regimen and radiation exposure


Adapted from Calais J. UCLA 2023 EANM 2023; NCCN Guidelines Version 4.2023 Category 1 Preferred Scher 2015, PLoS1; Nezolosky 2018, Journal of Clinical Oncology; ASCO Cancer.NET, Prostate Cancer Statistics, accessed November 2023.

Demonstrated anti-tumor effect and overall survival benefit^{1,2}

Clinical development and current efficacy data

- To date: evaluated in 242 prostate cancer patients in eight Ph1/2 studies
- Evidence of anti-tumor effect and a clear doseresponse profile for key measures of efficacy
 - Prostate-specific antigen (PSA) response
 - Overall survival (OS) published 42.3 months median survival in end-stage (heavily pre-treated) patients¹
- Well-tolerated with predictable and transient hematological toxicity, with subsequent recovery

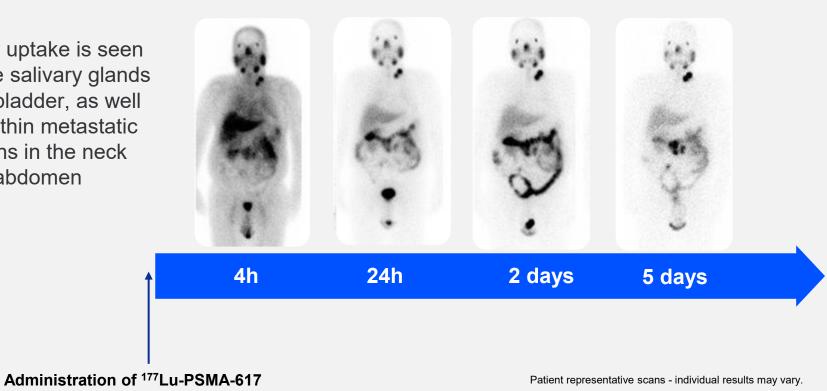

Fractionated dosing manages hematologic safety while delivering a highly targeted and potent radiation dose to prostate cancer metastases

Initial biodistribution

TLX591 in the blood is rapidly cleared by the liver

Distribution of ¹⁷⁷Lu-TLX591 over 13 days^{1*}

Abbreviated ProstACT SELECT study design: A phase 1 study (N=28) to evaluate the safety, tolerability, biodistribution, and dosimetry of ¹⁷⁷Lu-TLX591 in patients with PSMA-expressing mCRPC². *Scans of high disease burden patient with mCRPC from ProstACT SELECT¹.

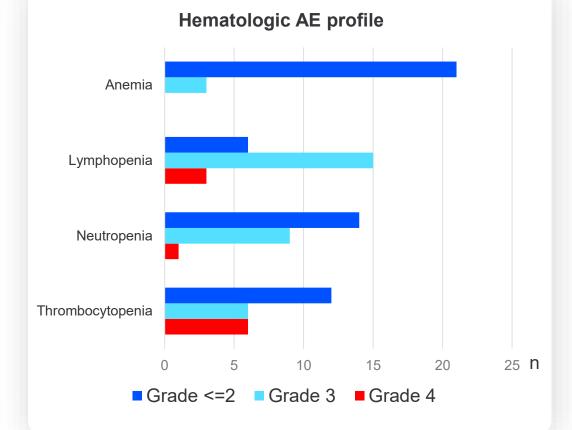

68Ga=gallium 68; 177Lu=Lutetium-177; mCRPC=metastatic castration-resistant prostate cancer; PSMA=prostate specific membrane antigen.

1. Data on File. Telix Pharmaceuticals Limited. 2. Lenzo N, et al. J Nucl Med. 2024;65(suppl 2). Abstract 241503.

Biodistribution: ¹⁷⁷Lu-PSMA-617

Distribution of ¹⁷⁷Lu-PSMA-617 over 5 days¹ (SPECT)

Early uptake is seen in the salivary glands and bladder, as well as within metastatic lesions in the neck and abdomen



2017 Kabasakal et al. Mol Imaging Radionucl Ther. 2017 Jun; 26(2): 62–68. "Lu-177-PSMA-617 Prostate-Specific Membrane Antigen Inhibitor Therapy in Patients with Castration-Resistant Prostate Cancer: Stability, Bio-distribution & Dosimetry".

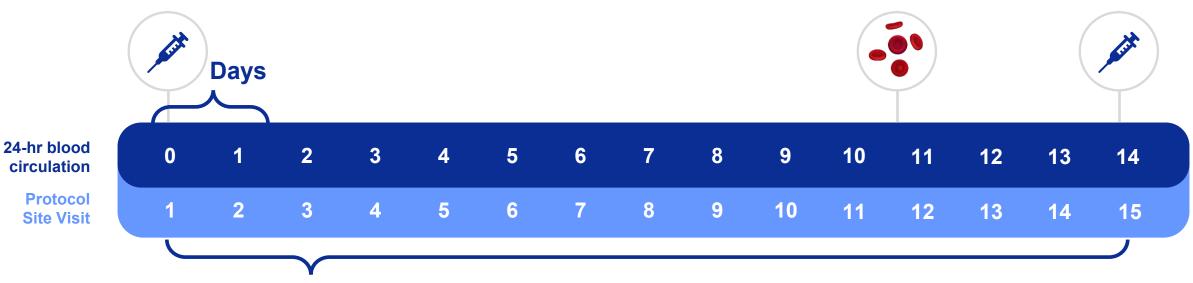
Recap: Safety data reported from ProstACT SELECT study¹

Safety and tolerability profile

elix

Hematologic laboratory profile

- Grade 3 thrombocytopenia (25%) and neutropenia (38%) events in line with profile expected for this class of therapy
- Grade 4 thrombocytopenia (25%) and neutropenia (4%) were transient
- Four patients (17%) received intervention for hematologic toxicity in the form of platelets, growth factors or both


Non-hematologic events

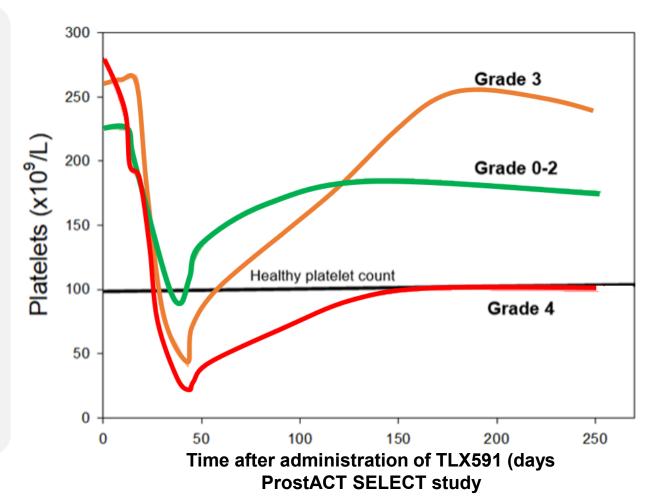
- All drug-related non-hematologic events were grade 1 or grade 2
- The most prevalent non-hematological adverse events were fatigue (76%), nausea (20%) and loss of appetite (20%)

1. Telix ASX disclosure 19 October 2023. Total evaluable patient population, N=28. Interim analysis. ClinicalTrials.gov ID: NCT04786847.

Dosing regimen for TLX591

Designed to manage hematologic toxicity

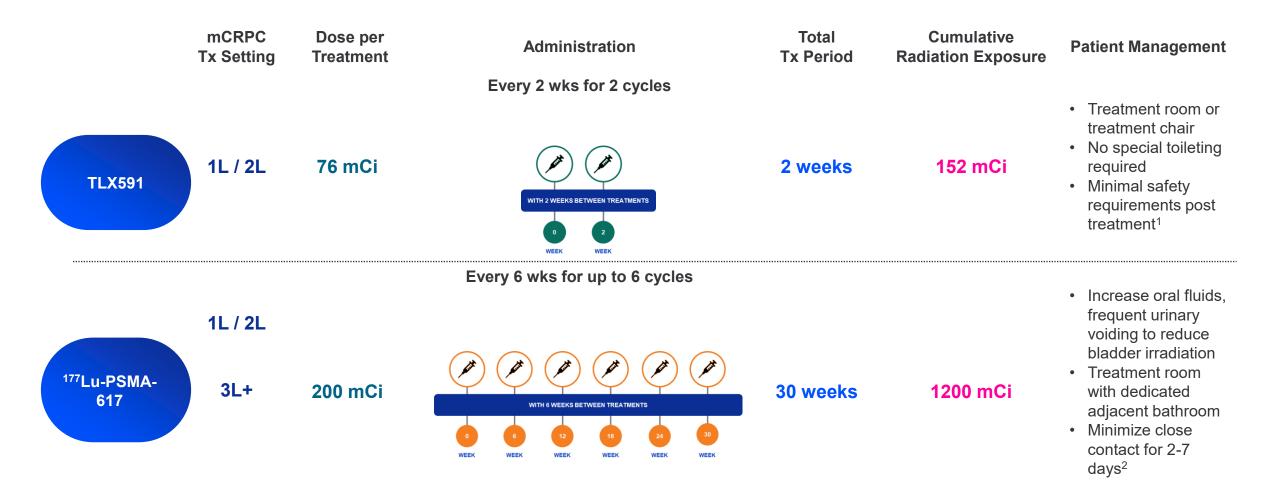
2 weeks between treatments


- Day 0 TLX591 solution for injection
- SKU1 2.8 GBq (76 mCi)
- 2 treatments administered 14 days apart
- Hematological assessment (day 11)* (Grade 2 & Grade 3 AEs for Thrombocytopenia, Anemia, Neutropenia)
- Slow intravenous (IV) injection (5 to 15 minutes)
- Day 14 TLX591 solution for injection
- SKU2 50% reduction 38 mCi (equivalent to an administered activity of 22.4 mCi/m² in a 1.7m2 individual)

Hematologic profile is predictable and consistent

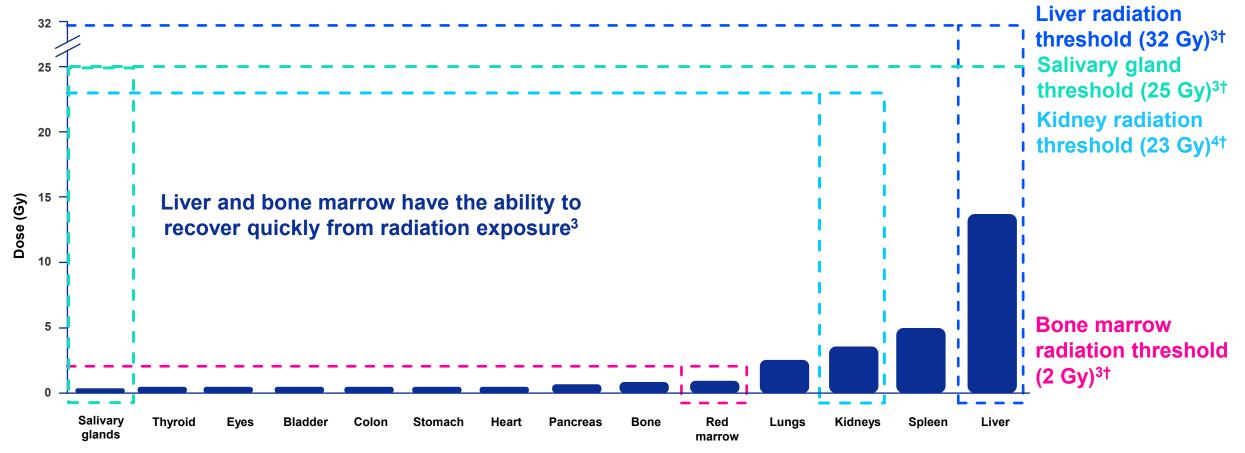
Data suggests manageable hematologic toxicity profile¹

Hematological safety profile


- The change in platelet count following the administration of TLX591 was predictable, transient and manageable
- Consistent with prior clinical experience across multiple Phase 1 and 2 studies
- No patient treated with two therapeutic doses of TLX591 was discontinued from study due to adverse events

1. ProstACT SELECT data on file. Total evaluable patient population, N=28. Interim analysis. ClinicalTrials.gov ID: NCT04786847.

Cumulative injected activity

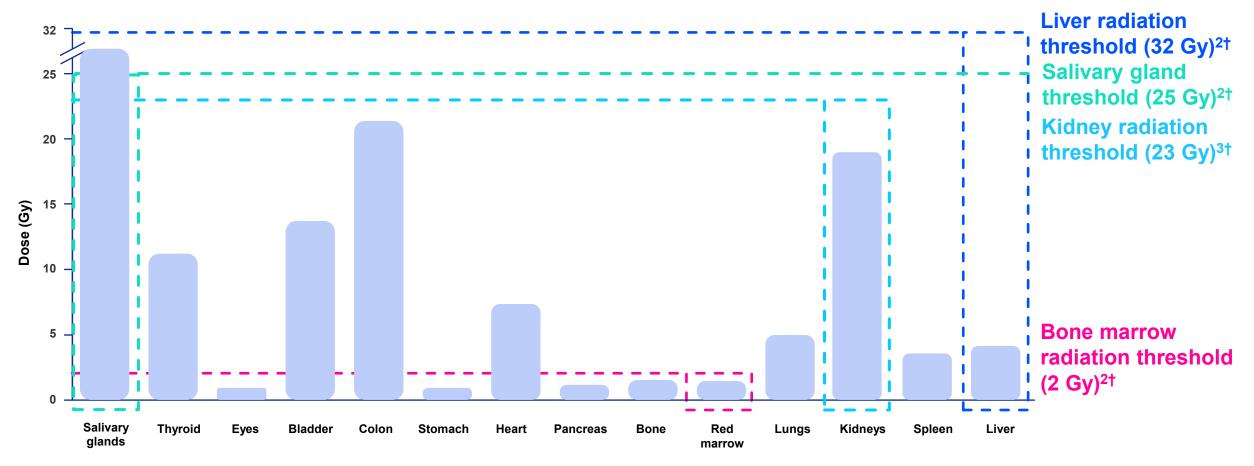


()) Telix

1. Phase 3 ProstACT Global IMP Handling Guide.

2. A Comprehensive Guide to Administering Pluvicto

Liver, kidney and red marrow received radiation doses below recommended thresholds in ProstACT SELECT study^{1,2}


Abbreviated ProstACT SELECT study design: A phase 1 study (N=28) to evaluate the safety, tolerability, biodistribution, and dosimetry of ¹⁷⁷Lu-TLX591 in patients with PSMA-expressing mCRPC. *In cohort 2 of ProstACT SELECT (n=23), patients received 76 mCi of ¹⁷⁷Lu-TLX591 x 2 doses 14 days apart †External beam radiation limits.

1. Data on file. Telix Pharmaceuticals Limited. 2. Lenzo N, et al. J Nucl Med. 2024;65(suppl 2). Abstract 241503. 3. Wahl RL, et al. JNuclMedicine. 2021; 62 (12, suppl 3): 23S-35

4. https://www.fda.gov/media/144845/download 5.

Liver, kidney and red marrow received radiation doses for ¹⁷⁷Lu-PSMA-617¹

Abbreviated VISION sub-study design: A separate substudy (N=30) to evaluate the safety, dosimetry, and biodistribution of ¹⁷⁷Lu-PSMA-617 in patients with mCRPC.

1. Herrmann K, et al. J Nucl Med. 2024;65(1):71-78. 2. Wahl RL, et al. J Nucl Med. 2021;62(12, suppl 3. https://www.fda.gov/media/144845/download [†]External beam radiation limits. Left colon data were used for Lu177-PSMA617. Right colon dosimetry was 14 (8.1-27) Gy.

TLX592: ²²⁵Ac-PSMA therapy leveraging next generation antibody

Safety, PK, and dosimetry demonstrated in the CUPID trial¹

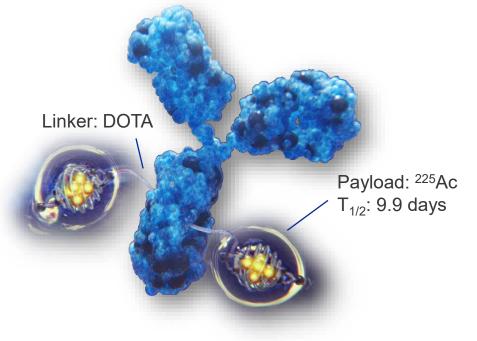
Product candidate TLX592 (²²⁵Ac-PSMA-RADmAb)

Targeting molecule / target

Engineered antibody / Prostate-specific membrane antigen

Indication

Metastatic castrate-resistant prostate cancer (mCRPC)


Clinical experience to date

CUPID Phase 1 Study demonstrated:

- ⁶⁴Cu-TLX592 clears the blood more rapidly than
 ¹⁷⁷Lu-rosopatamab with similar biodistribution
- ⁶⁴Cu-TLX592 had acceptable safe profile and was well tolerated

Clinical trials

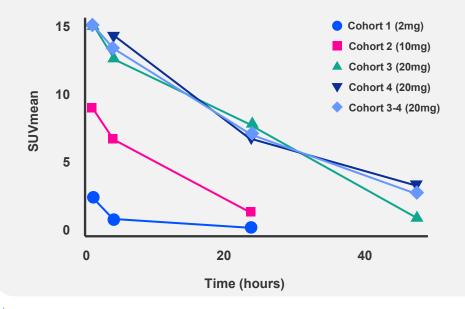
 Phase 1/2 first-in-human therapeutic study in planning, anticipated to commenced in H2 2025

TLX592: Next-generation alpha therapy candidate

Antibody with novel properties to facilitate rapid clearance¹

Target **Prostate-Specific Membrane** Antigen (PSMA) – expressed by the majority of prostate cancers **Targeting Agent** RADmAb[®] engineered antibody – TLX592 Pavload ²²⁵Ac

- RADmAb® is a proprietary antibody engineered for use with ²²⁵Ac for targeted alpha therapy
- Designed to have faster elimination from circulation than standard antibodies
- Designed to reduce bone marrow residence time to mitigate hematologic toxicity and retain PSMA-mediated tumor localization and cytotoxic activity
- Designed to be liver-cleared, no exocrine uptake
- Development status: Phase 1 CUPID proof-of-concept study completed using ⁶⁴Cu (detectable by PET) as a surrogate for ²²⁵Ac; first-in-human therapeutic study in planning

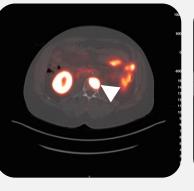


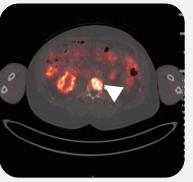
TLX592: Safety profile, pharmacokinetics and dosimetry

CUPID study data presented at ASCO-GU 2025

Pharmacokinetics

- ⁶⁴Cu-PSMA-RADmAb blood clearance rate: T¹/₂=19.86+1.96h at 20 mg
- ⁶⁴Cu-PSMA-RADmAb biological half-life in blood showed a clear mass dose response

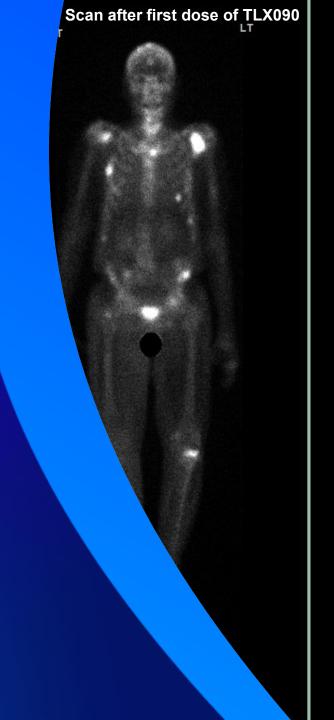

Absorbed radiation doses


- Whole-body effective dose (mean ± SD mSv/MBq):
 - Group 3: 0.043 ± 0.007
 - *Group 4*: 0.042 ± 0.002
- ⁶⁴Cu-PSMA-RADmAb uptake in bone lesions in Group 4 correlated with ⁶⁸Ga-PSMA-11 uptake (r=0.756, P=0.003) at 20h timepoint

⁶⁸Ga-PSMA-11

⁶⁴Cu-PSMA-RADmAb (20mg)

PET targeting of PC metastasis in L3 lumbar vertebral body (arrow)



()) Telix

TLX090: A proprietary formulation of Samarium-153

Advancing development as a treatment for metastatic bone pain

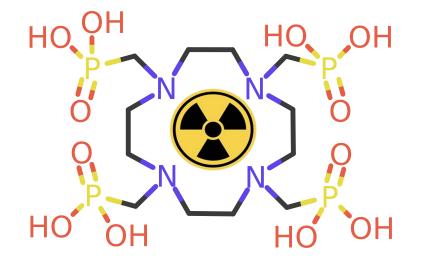
Product candidate

TLX090 (¹⁵³Sm-DOTMP) FDA Orphan Drug designation

Targeting molecule / target

Small molecule Selectively binds to hydroxyapatite in areas of high bone turnover

Indication

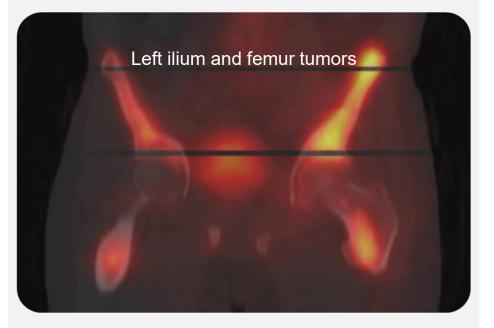

Palliation of bone pain from metastatic prostate cancer or breast cancer

Clinical experience to date

Phase 1 data demonstrate favorable early safety profile and encouraging efficacy signal

Current status / planned clinical activity

Phase 1 bridging study targeting commencement in 2025


TLX090: Next-generation, bone-seeking radiopharmaceutical

Advancing development as a treatment for metastatic bone pain

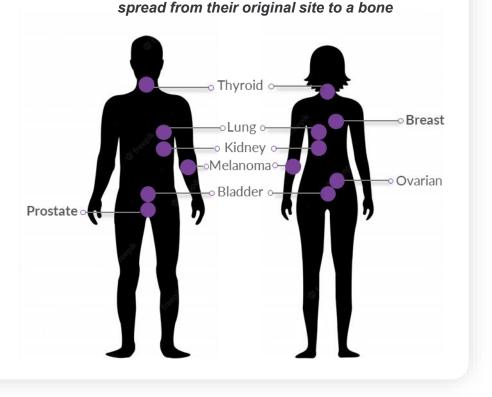
TLX090 (153Sm DOTMP)

- **Bone-seeking small molecule**, proven isotope platform + novel chelator seeks to improve tolerability
- Being developed as a palliative / pain management of bone metastases; future potential therapeutic application(s) in malignancies affecting bone
- Potentially avoids skeletal saturation, leading to lower marrow dose and safe organ clearance; improves potential for safe and repeat dosing to manage pain
- Early studies in pain setting have demonstrated quality of life improvements
- Phase 1 bridging study targeting commencement in 2025

Metastatic Prostate Cancer Patient

Targeted bone tumor uptake clear in SPECT/CT scan; no soft tissue exposure seen

Illustrative example only. Individual outcomes may vary.



Clinical utility: Treating metastatic bone pain

Significant unmet medical need and opportunity to improve quality of life

Palliative utility (low dose, single dose)

- Patients with multifocal bone metastases often experience severe, persistent pain that significantly impairs quality of life
- Common treatments like opioids, steroids, and bisphosphonates offer only partial relief and carry substantial side effects
- EBRT is localized, logistically demanding, and unsuitable for widespread skeletal disease¹
- Approx. 80–90% of metastatic prostate cancer patients² and 65– 75% of metastatic breast cancer patients develop bone lesions³ often with severe, multifocal pain
- TLX090 may offer a differentiated alternative: Targeted, systemic pain palliation through a single intravenous dose

Bone metastases occurs when cancer cells

Huang, J., et al., (2020). Incidence Of Patients with Bone Metastases At Diagnosis Of Solid Tumors In Adults: A Large Population-Based Study. Doi: 10.21037/atm.2020.03.55. EBRT = External beam radiation therapy.

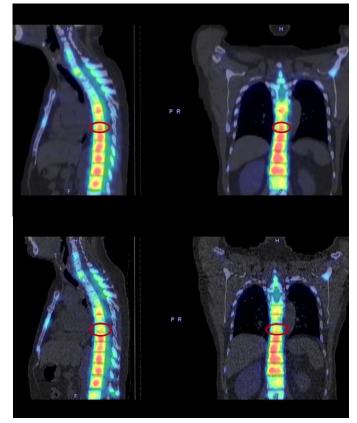
3. Pang, Lulian et al. "Bone Metastasis of Breast Cancer: Molecular Mechanisms and Therapeutic Strategies." Cancers vol. 14,23 5727. 22 Nov. 2022, doi:10.3390/cancers14235727

TLX090 Clinical profile

Phase 1 data demonstrate favorable early safety profile and encouraging efficacy signal

Pain relief and symptom improvement

- Consistent pain reduction: All patients experienced >20% reduction in pain scores by week 6
- Functional benefit: Anecdotal reports suggest improved mobility
- Opioid reduction: Opportunity to decrease usage of opioids


Favorable safety profile

- Well tolerated: All patients completed treatment without dose-limiting toxicities.
- Minimal hematologic impact: Hematologic toxicities were clinically insignificant
- Stable organ function: No clinically significant changes in liver or kidney function observed

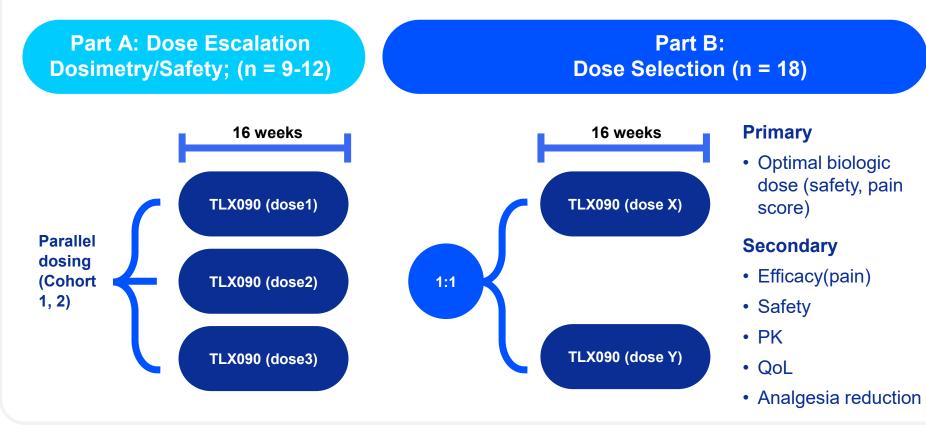
Isolated adverse events:

- One case of thrombocytopenia in a patient with extensive skeletal metastases (superscan features)
- One Grade 3 QTc¹ prolongation in a patient with pre-existing cardiac comorbidities. No other Grade 3 or 4 adverse events reported

Patient with mCRPC bone mets treated with TLX090. Tumor shows 19% decrease in absorbed dose within 8 days indicating rapid efficacy.

Illustrative case study only. Individual outcomes may vary.

Data on file. ClinicalTrials.gov ID NCT06008483


1. Corrected QT interval, a measurement on an electrocardiogram (ECG) that accounts for heart rate variations.

TLX090 SOLACE trial: Metastatic bone pain

Phase 1 bridging study planned to commence in 2025¹

Single dose 153-Sm-DOTMP for treatment of metastatic bone pain

- Phase 1 bridging study links to first-generation product
- Objectives to confirm favorable safety profile, efficacy, and optimal dosing
- IND submission planned H2 2025

TLX250

TLX250-CDx (PET Imaging of CAIX)

> TLX250 (CAIX ¹⁷⁷Lu Therapy)

Images from STARLITE-2 study. Credit: Memorial Sloan Kettering Cancer Center.

TLX250: First-in-class rADC for kidney cancer

Large opportunity across ccRCC and other CAIX-expressing tumors

Product candidate

TLX250 (¹⁷⁷Lu-DOTA-girentuximab)

Targeting molecule / target

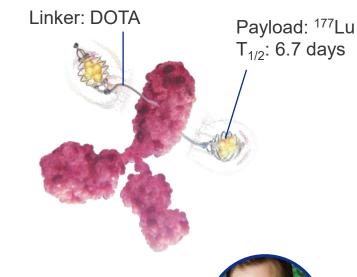
Antibody /

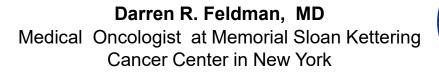
Carbonic anhydrase IX (CAIX)

Indication

Clear cell renal cell carcinoma

Clinical experience to date


- Demonstrated potential for disease stabilization in 2 trials
 - **Phase 1:** Dose escalation to identify safety & MTD in 23 patients with advanced ccRCC
 - **Phase 2**: Dosed patients at maximum tolerated dose to evaluate efficacy in 14 patients with progressive mccRCC



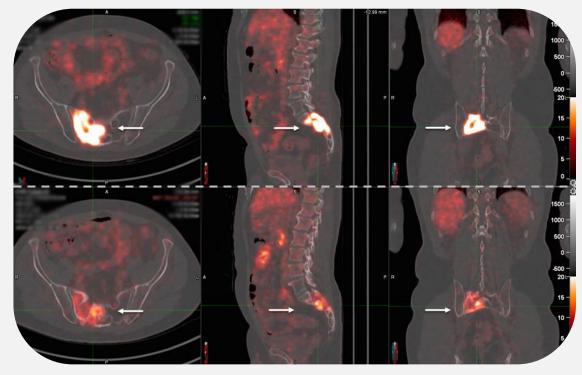
ClinicalTrials.gov ID: <u>NCT05663710.</u>
 ClinicalTrials.gov ID: <u>NCT05239533.</u>
 ClinicalTrials.gov ID: <u>NCT05868174.</u>

Clinical trials

- STARLITE-1 (Phase 1b/2) enrolling patients¹
- STARLITE-2 (Phase 2) enrolling patients²
- STARSTRUCK (Phase 1b) enrolling³
- Planning pathway to pivotal study in ccRCC

"The selective targeting of TLX250 to CAIX delivers radiation therapy directly to ccRCC tumors. Combining this innovative approach with anti-PD-1/PD-L1 therapy could enhance existing immune-based treatments."

TLX250: Validated in ccRCC, pan-cancer potential


Positioned to be first CAIX-targeting rADC to market

TLX250 (177Lu-girentuximab)

- Monoclonal antibody targeting Carbonic Anhydrase IX (CAIX), a validated target expressed in >90% of ccRCC and range of solid tumors¹
- Ability to image CAIX with Zircaix², use of extensively studied 177-Lutetium payload derisks clinical program³
- Demonstrated durable disease control in a Phase 1 and a Phase 2 RCC study with a manageable safety profile^{4,5}
- **High unmet need in late-line RCC**, with expansion potential to other solid tumors

Pastorekova S and Gillies RJ. Cancer Metastasis Rev. 2019;38:65-77. Brand name subject to final regulatory approval. **TOP:** ⁸⁹Zr-girentuximab PET/CT at baseline showing uptake in a sacral metastatic lesion in a patient with ccRCC.

BOTTOM: ⁸⁹Zr-girentuximab PET/CT after three cycles of therapy.

- Stillbroer et al. *European Urology*. 2013.
- 5. Muselaers et al. European Urology. 2015.

Images from Telix's STARSTRUCK study, data on file. Patient representative scans - individual results may vary.

Established clinical proof of concept for renal cancer therapy

Encouraging safety/tolerability profile, preliminary efficacy signal (monotherapy)

Previously studied in end-stage patients with advanced renal cell carcinoma:

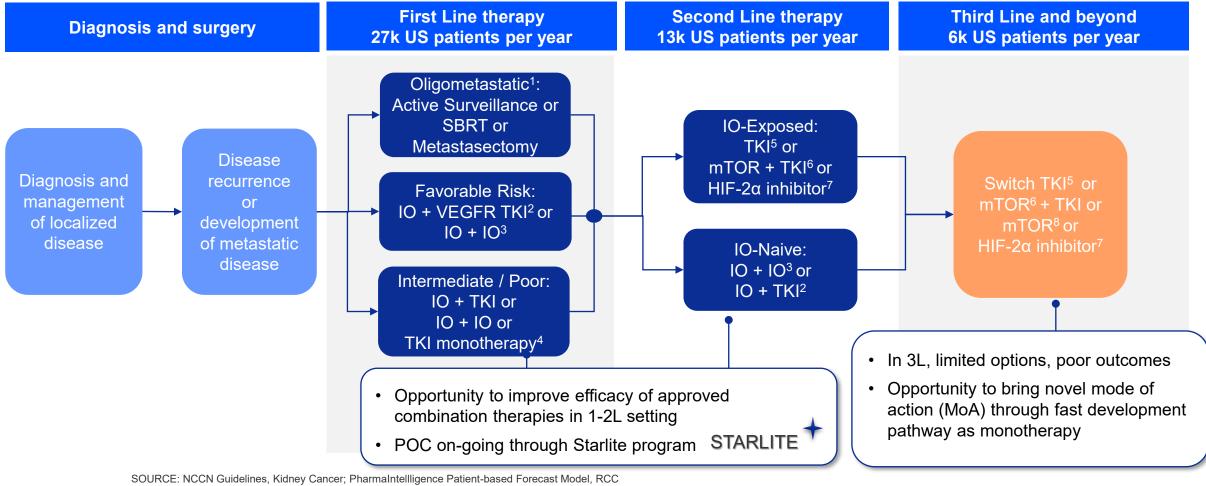
- Phase 1: Dose escalation study to identify safety & MTD in 23 patients with advanced ccRCC¹
- Phase 2: Dosed at maximum tolerated dose (65 mCi/m²) to evaluate efficacy in 14 patients with advanced ccRCC²

Prior studies have demonstrated:

- Good safety profile^{1,2}
- Potential to stabilize disease in metastatic ccRCC as a monotherapy
- Disease control rate: 74% (Phase 1 trial)
- Median PFS for all patients was 8.1 months but different pre-treatment profile (VEGF-TKI) (Phase 2 trial)

¹⁷⁷Lu-TLX250 SPECT Imaging

SPECT image post ¹⁷⁷Lu-TLX250 treatment showing uptake of drug product in metastatic ccRCC tumors expressing CAIX


Phase 1 Radioimmunotherapy Study with Lutetium 177–labelled Anti-Carbonic Anhydrase IX Monoclonal Antibody Girentuximab in Patients with Advanced Renal Cell Carcinoma.

1. Stillbroer et al., European Urology 6 4 (2 01 3) 4 7 8 – 4 8

2. Muselaers CHJ, et al. Phase 2 Study of Lutetium 177-Labeled Anti-Carbonic Anhydrase IX Monoclonal Antibody Girentuximab in Patients with Advanced Renal Cell Carcinoma. Eur Urol (2015)

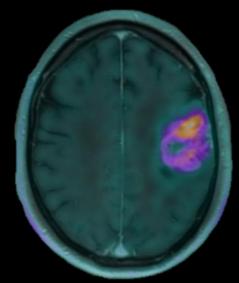
Typical patient journey for a metastatic kidney cancer patient

Major unmet needs include enhancing efficacy of combination treatments and late-line treatment

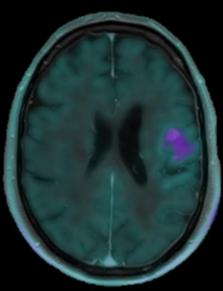
Cabozantinib: Axitinib: Tivozanib.

- Options only available for patients with select favorable disease features. 5. Axitinib/Pembrolizumab; Cabozantinib/Nivolumab; Lenvatinib/Everolimus 6.
- Lenvatinib/Pembrolizumab.
- Ipilumumab/Nivolumab.
- Cabozantinib only.

- 7. Belzutifan. Everolimus


TLX250: Development pathway

Study name	Indication	Phase	Status
Gro STARLITE-1 ClinicalTrials.gov ID: NCT05663710	Treatment-naïve advanced ccRCC	1b/2	 Enrolling patients TLX250 in combination with cabozantinib and nivolumab
Go STARLITE-2 ClinicalTrials.gov ID: NCT05239533	Advanced or metastatic ccRCC	2	 MTD of TLX250 established when administered in combination with nivolumab Enrolling an expansion cohort at the MTD
Geo STARSTRUCK ClinicalTrials.gov ID: NCT05868174		1b	 Enrolling patients TLX250 in combination with peposertib
Geo Pivotal study	Unresectable, locally advanced or metastatic ccRCC	2/3	 In planning, expected to open in ex-U.S. sites in 2025 Monotherapy
()) Telix			


Glioblastoma patient (salvage) with clinically stable disease 18 months from initiation of TLX101 therapy

Brain cancer

TLX101

10 months

16 months

T = 0

18 months

Patient representative scans - individual results may vary. Credit A. Braat, Utrecht.

TLX101-CDx (Pixclara) for imaging glioma

Unmet need for delineating progressive disease from treatment-induced changes

Product candidate

TLX101-CDx (Pixclara¹)

¹⁸F-floretyrosine or ¹⁸F-FET

FDA Orphan Drug and Fast Track designations

Targeting molecule / target

Small molecule /

L-Type amino acid transporters 1 and 2 (LAT1 & 2)

Indication

Characterization of progressive or recurrent glioma

Clinical experience to date

- Widely used in Europe and recommended in the EANM/EANO/RANO/SNMMI guidelines for PET imaging of gliomas²
- First PET-based response assessment criteria for diffuse gliomas issued by RANO in January 2024³

Current status

- Preparing to re-file U.S. NDA
- Expanded access program active in the U.S.

Upcoming milestones

Targeted global regulatory filings, opportunities in select markets where access is currently restricted

Patrick Wen, MD, Professor, Neurology, Harvard Medical School and Director, Center for Neuro-**Oncology**, Dana-Farber Cancer Institute

"TLX101-CDx (¹⁸FET-PET) shows potential to provide a more rapid and conclusive diagnosis, inform treatment decisions and deliver a new standard for the management of gliomas in the U.S."

Pavload: ¹⁸F

T_{1/2}: 110 mins

TLX101: Potential first systemic radiotherapy in glioblastoma

Promising therapeutic profile, simple IV administration solves major challenge in GBM treatment

Product candidate

TLX101 (¹³¹I lodofalan) FDA and EU Orphan Drug designation

Targeting molecule / target

Small molecule / L-Type amino acid transporter 1 (LAT1)

Indication

Glioblastoma

elix

Clinical experience to date

Phase 2 IPAX-Linz¹:

- Median overall survival (OS) of 12.4 months from initiation of TLX101 dosing
- mOS of 32.2 months from initial diagnosis ٠
- No serious adverse events (AEs)
- **Phase 1 IPAX-1²:** mOS 23 months from initial diagnosis

Planned clinical activity

Planned initiation of pivotal trial in Australia in 2025

Professor Josef Pichler, Kepler University Hospital, Austria

"TLX101 continues to show significant potential to improve outcomes for patients living with high-grade glioma. These results also potentially support higher therapeutic doses in subsequent prospective controlled studies."

Telix ASX disclosure 16 April 2025.
 Telix ASX disclosure 21 September 2022. Pichler et al. *Neurooncol Adv.* 2024. ClinicalTrials.gov ID: <u>NCT03849105</u>.

TLX101: Novel treatment candidate for glioblastoma (GBM)

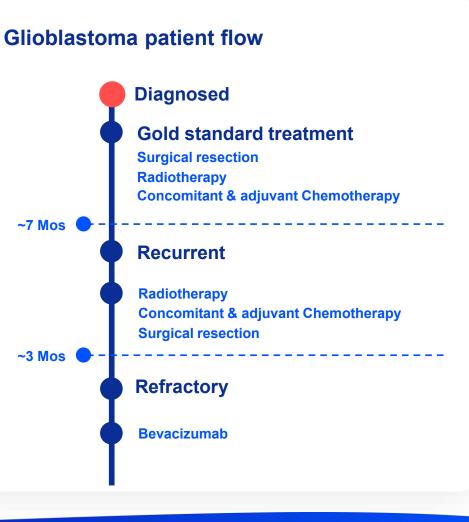
Promising therapeutic profile, IV delivery addresses a challenge in GBM

TLX101: lodofalan (¹³¹I) ¹³¹I payload

4-iodo-L-phenylalanine (IPA) LAT1-targeting agent

TLX101 is an iodine-labelled small molecule, lodofalan (¹³¹I), targeting the L-Type amino acid transporter 1 (LAT1)

- Validated target highly expressed in a wide variety of solid tumors, including malignancies of the central nervous system (CNS)
- Intravenous delivery with ability to cross the blood-brain barrier; MOA synergistic to external beam radiation therapy (EBRT)
- Early safety profile and tolerability in combination with EBRT confirmed in glioblastoma (GBM) Phase 1 trial, along with encouraging preliminary efficacy signal (via PET, OS)^{1, 2}
- **Granted orphan drug designation** in the U.S. (10-3287) and EU (EU/2/06/363) for the treatment of gliomas


Significant unmet need in glioblastoma

Initial focus on recurrent GBM patients with limited treatment options

- Most common and most aggressive primary brain tumor
 - Over 14,500 U.S. patients diagnosed each year
 - Most patients progress after ~7 months
 - mOS of 12-15 months, 5-year survival of 4.7%¹
 - Clinical trial as preferred option recommended by NCCN for recurrent patients²
- First line standard of care consists of surgery, chemotherapy, radiation w/ over 90% of patients experiencing recurrence
- No established 2nd line standard of care
- Key challenge for treatments is crossing blood-brain barrier, limiting potential of intravenous therapies

 Fisher, J.P.; Adamson, D.C. Current FDA-Approved Therapies for High-Grade Malignant Gliomas. Biomedicines 2021, 9, 324.
 NCCN Clinical Practice Guidelines, Central Nervous System Cancers, Version 1.2023

TLX101: Development pathway

	Study name	Indication (GBM)	Phase	Status
	IPAX-1 ClinicalTrials.gov ID: <u>NCT03849105</u>	First recurrence	1	Completed Demonstrated mOS of 13 months from the initiation of treatment, or 23 months from initial diagnosis ¹
	IPAX-2 ClinicalTrials.gov ID: <u>NCT05450744</u>	Newly diagnosed	1	Recruiting
	IPAX-Linz	First or second recurrence	2 (IIT)	Study closed, topline data released ² Demonstrated mOS of 12.4 months from the initiation of treatment, or 32.2 months from initial diagnosis.
	IPAX-BrIGHT	First or second recurrence	Pivotal registration study	Planned to commence dosing patients in 2025, ex-U.S. sites
()) Telix	 Picher et al. <i>Neurooncol.</i> Telix ASX release 16 Apr 			

Addressing brain malignancies with alpha and beta therapy candidates

Two treatment candidates addressing distinct unmet needs

	TLX101	TLX102
Targeting agent	Phenylalanine (targets LAT1 and 2)	Phenylalanine (targets LAT1 and 2)
lsotope	lodine-131 (beta emitter)	Astatine-211 (alpha emitter)
Half life	8.02 days ¹	7.21 hours ²
Administration method	IV administration (outpatient procedure)	IV or Intraarterial (IA) administration (outpatient procedure)
Lead indication	Recurrent GBM (~9k U.S. patients per year)	Follow-on to TLX101 (Indications Undisclosed)
Development stage and next step	Pivotal trial targeting commencement in 2025	First-in-human study targeting commencement in 2026

- TLX101 and TLX102 are ideal to treat brain malignancies because they cross the blood-brain barrier, enabling IV administration and outpatient procedures
- TLX102 uses identical targeting agent, but is labelled with astatine-211, an alpha emitter which may help overcome radiation resistance commonly seen in CNS cancers
- Future potential: Exploring TLX101 and TLX102 beyond GBM into other neuro-oncology indications

1. https://www.cdc.gov/radiation-emergencies/hcp/isotopes/iodine-131.html 2. Guérard, François et al. "Production of [(211)At]-astatinated radiopharmaceuticals and applications in targeted α-particle therapy." Cancer biotherapy & radiopharmaceuticals vol. 28,1 (2013): 1-20. doi:10.1089/cbr.2012.1292

TLX102: ²¹¹At labelled follow-on product

High potency isotope with shorter path length provides potential to expand adoption

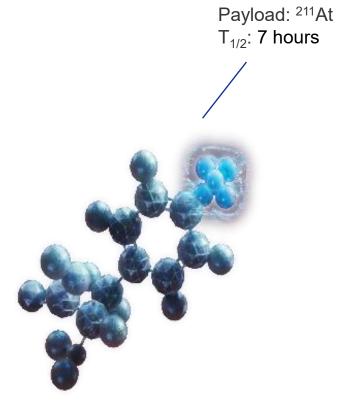
Product candidate

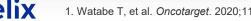
TLX102 (²¹¹At astato-l-phenylalanine)

Targeting molecule / target

Small molecule / L-Type amino acid transporter 1 (LAT1)

Indication


Undisclosed


Pre-clinical experience to date

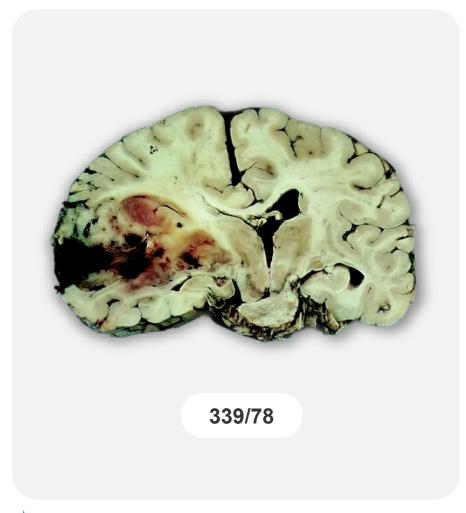
- Preclinical data in glioma models demonstrated tumor growth inhibition, acceptable safety profile (no observed weight loss)¹
- TLX102 also permeates blood-brain barrier and ٠ enables simple intravenous administration

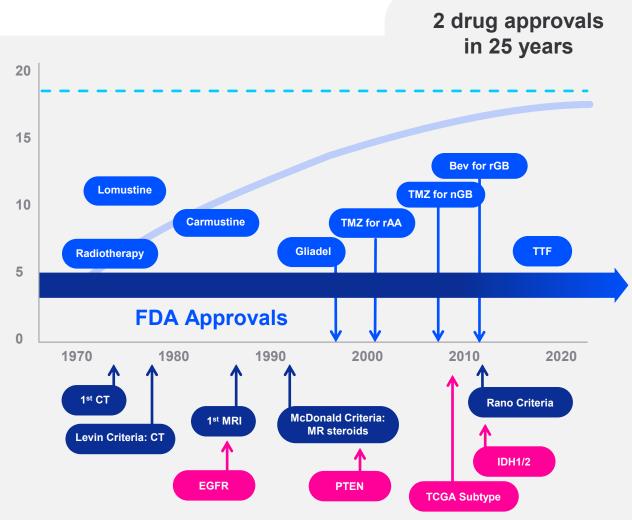
Planned clinical activity

First-in-human study targeting • commencement in 2026

KOL perspective: TLX101

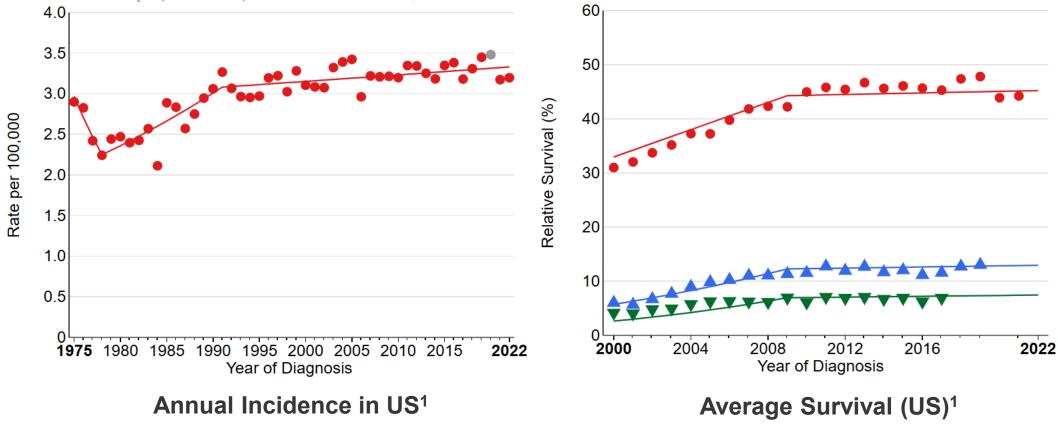
John de Groot, MD


Division Chief of Neuro-Oncology at University of California San Francisco



Glioblastoma: where are we now?

Survival (months)



Evidence-based management of adult glioblastoma

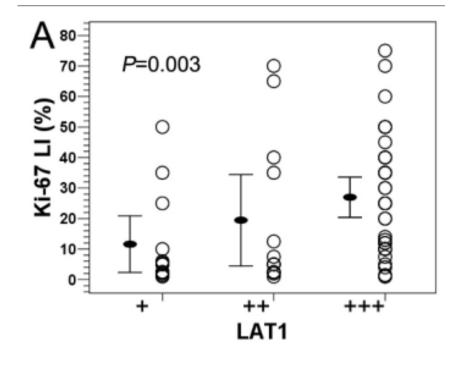
- Maximum safe resection
- Conventionally fractionated limited-field radiotherapy
- Chemotherapy
 - Concurrent daily temozolomide with radiotherapy
 - 6-12 cycles post-radiotherapy temozolomide
 - Single agent bevacizumab at recurrence
- Tumor treating fields
 - FDA approved in 2011 (recurrent disease) and 2015 (Newly diagnosed disease)

Glioblastoma is increasing and overall survival rates remain low

● 1-year survival, ▲ 3-year survival, ▼ 5-year survival

e

LAT1 is a validated target upregulated in brain malignancies

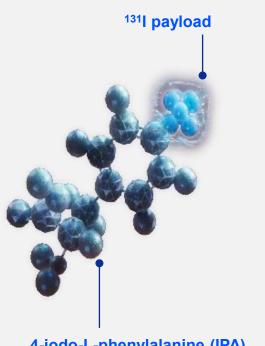

Role in drug transport, cell proliferation, and survival

LAT1 is a transmembrane transporter¹ that is

- Integral to the transport of large neutral amino acids across the blood-brain barrier, playing a crucial role in brain homeostasis and the delivery of therapeutic agents²
- Expressed on both the luminal (plasma-facing) and abluminal (brain-facing) membrane side of the capillary endothelial cells of the blood-brain barrier³
- Upregulated in gliomas^{1,3,4} with negligible expression found in adjacent normal brain tissue⁴

LAT1 plays a key role in cancer growth and survival¹

 High expression in human gliomas associated with progression and poor prognosis⁴ LAT1 Overexpression Is Correlated With Ki67, a Marker of Cell Proliferation, in Human Gliomas⁴



1. Singh N and Ecker GF. Int J Mol Sci. 2018;19(5):1278. 2. Ahmed HS. Mol Neurobiol. 2024. doi: 10.1007/s12035-024-04506-9. Online ahead of print. 3. Li L, et al. Colloids Surf B Biointerfaces. 2016;141:260-267. 4. Haining Z, et al. BMC Clin Pathol. 2012;12:4. 5. Nawashiro H, et al. Int J Cancer. 2006;119(3):484-492.

TLX101: Potential first-in-class systemic radiotherapy for GBM

Novel approach passes blood-brain barrier, enabling effective treatment with IV administration

TLX101: lodofalan (¹³¹I)

4-iodo-L-phenylalanine (IPA) LAT1-targeting agent

Mechanism of action

۲

- Radiolabelled IPA delivers systemic radiation directly to tumor
 - Binds to LAT1 receptor, upregulated in cancerous lesions¹, and internalized
 - Iodine-131 payload emits cytotoxic radiation to induce cell death
- Potentially synergistic with external beam radiation as a sensitizing agent¹

Benefits of the TLX101 approach

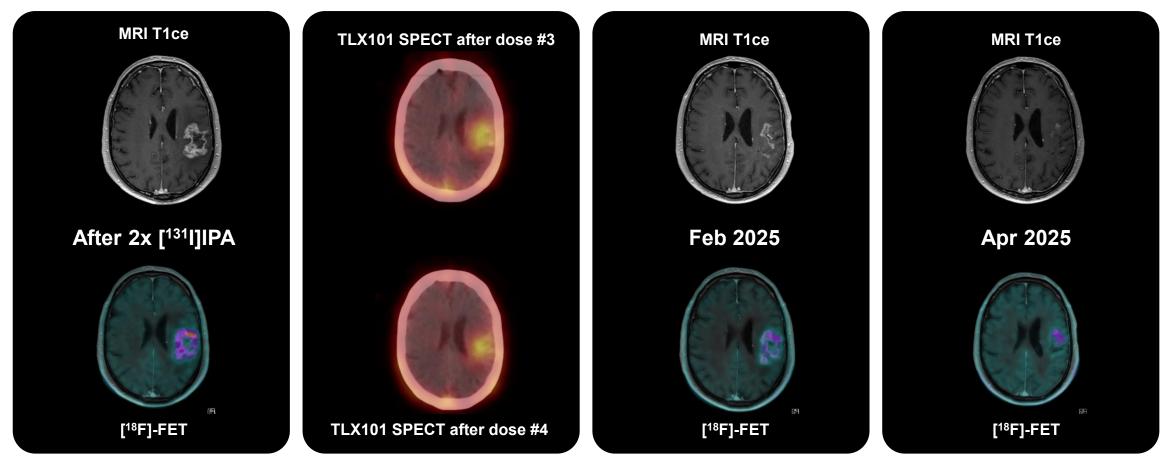
- **TLX101 readily passes blood-brain-barrier to reach tumors**¹, solving major challenge in GBM treatment
 - Enables effective treatment with out-patient intravenous administration
 - Removes requirement for intra-cranial administration, in-patient procedure impacting quality of life
- Safety and tolerability in combination with EBRT confirmed in Phase 1 trial, with encouraging preliminary efficacy signal (via PET, OS)²
- Iodine-131 as extensively studied payload used to treat thyroid cancer for decades

1. Samnick S, et al. J Nucl Med. 2009;50(12):2025-2032. 2. Pichler J, et al. Neurooncol Adv. 2024;6(1):vdaw130

Why is TLX101 promising?

Compassionate use case of glioblastoma patient with durable partial response after four treatments (1/2)

Courtesy of Dr. Braat UMC Utrecht



Why is TLX101 promising?

Compassionate use case of glioblastoma patient with durable partial response after four treatments (2/2)

Courtesy of Dr. Braat UMC Utrecht

Summary of IPAX-1 results

TLX101 plus EBRT was associated with acceptable safety profile and specific tumor targeting in patients with recurrent GBM

Safety and tolerability profile

- All dosing regimens
 were well tolerated
- Organ-absorbed radiation doses confirmed no radiation-based toxicity

Radiological tumor response (at 3-mo F/U, MRI)

• 44.4% patients had stable disease

Metabolic tumor response (at 3-mo F/U, ¹⁸F-FET PET)

- Based on peak uptake within the lesion, 66.7% patients had metabolic stable disease
- Based on mean lesion uptake, 77.8% patients had stable disease

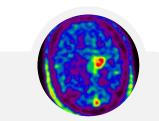
Survival outcomes

- Median PFS: 4.3 mo.
- Median OS: 23 mo. from initial diagnosis

Full Results detailed in Pichler et al. NeuroOncology Advances; 2024, 6(1), vdae130

Summary of IPAX-Linz top line results¹

Further substantiates safety profile and efficacy signal generated in IPAX-1


Patient population

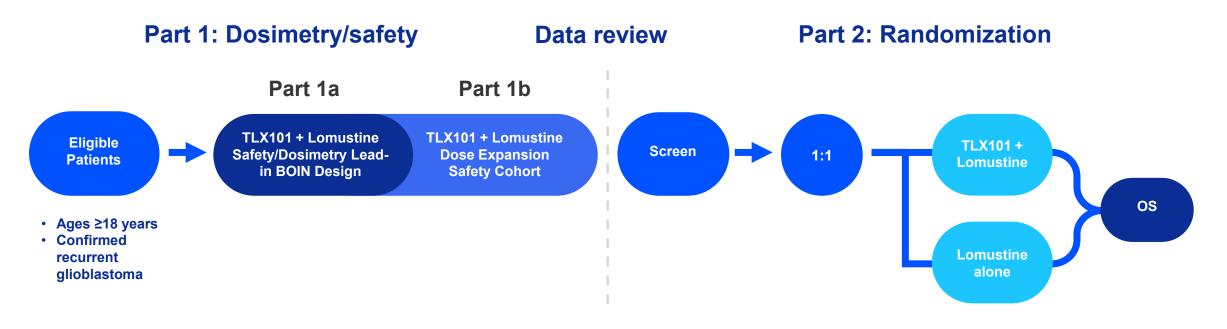
- 8 total rGBM patients treated
- 5 had MGMT unmethylated tumors which are associated with poor outcomes

Safety profile and tolerability

- Adaptive dosing regimen of up to 6 GBq total was well tolerated
- No serious adverse events (SAEs) related to TLX101

Survival outcomes

- Median OS: 32.2 mos from initial diagnosis
- Median OS from TLX101 + EBRT treatment: 12.4 mos


Next steps

6 GBq total dose
 was well tolerated
 which supports
 increased dosing in
 follow on studies

IPAX-BrIGHT: Study design

A pivotal, global registration enabling trial in recurrent glioblastoma

- IPAX-BrIGHT is currently under ethics review in Australia and CTA is under preparation for EU filing in 1H 2025. Telix will be seeking to commence enrolling patients in 2025 (subject to regulatory approval)¹.
- ¹⁸F-Floretyrosine will be used to select patients as well as assess response according to PET RANO

TLX66: Opportunity to improve outcomes for AML patients

A potent, low morbidity option for bone marrow conditioning

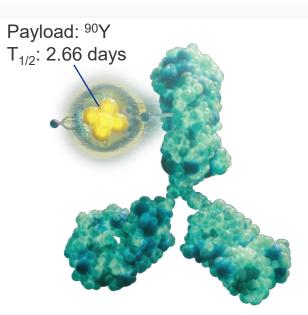
Product candidate

TLX66, 90Y-besilesomab FDA orphan drug designation

Targeting molecule / target

Antibody / cluster of differentiation 66

Indication


Bone marrow conditioning for allogeneic stem cell translation in acute myeloid leukemia (AML)

Clinical experience to date

~100 patients treated in Phase 1 & 2 IITs in different hematological diseases (AML, multiple myeloma, systemic amyloid light chain amyloidosis) requiring autologous or allogeneic stem cell transplantation

Current status / planned clinical activity

- Phase 2 investigator-initiated trial in pediatric high-risk leukemia dosing patients at Great Ormond Street Hospital in London
- U.S. FDA and EMA Orphan Drug Designation granted for TLX66 for bone marrow conditioning

Dr. Kim Orchard, Consultant Hematologist at University Hospital Southampton

"Compared to the significant toxicity profile typically experienced with conventional chemotherapy-based regimens, molecularly targeted radiation with ⁹⁰Y-besilesomab demonstrates a very benign toxicity profile. The very low toxicity but with demonstrable responses is very encouraging."

TLX300: Radiolabelled olaratumab advancing to clinical trials

Strong scientific, clinical and commercial rationale for development

Product candidate

TLX300 (-olaratumab)

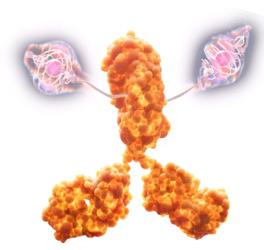
Targeting molecule / target

Antibody /

 $PDGFR\alpha$ (platelet-derived growth factor receptor alpha)

Indication

Advanced metastatic soft-tissue sarcoma


Clinical experience to date

- In-licensed from Eli Lilly and Company with exclusive rights to develop as a radiopharmaceutical¹
- Established clinical safety profile, favourable toxicology dataset and advanced manufacturing

Clinical trial

Phase 1 ZOLAR imaging study recruiting, trial aims to

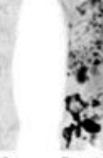
- Evaluate the safety, pharmacokinetics, biodistribution and dosimetry,
- Establish the optimal dose of TLX300-CDx in patients with advanced STS, prior to therapeutic studies, based on a theranostic approach

Professor Rod Hicks AM, MD, Founder, Chair, and Chief Medical Officer at Melbourne Theranostic Innovation Centre

"While localized soft-tissue sarcoma generally responds to radiotherapy, it is challenging to treat once it has spread. Targeted radionuclide therapy, which targets cancer cells throughout the body, is therefore an attractive option to treat disseminated disease."

Pan cancer:

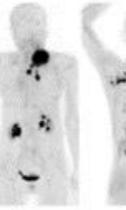
Spotlight on two key targets (CAIX and FAP)


Kratochwil et al. J Nuc Med. 2019. ⁶⁸Ga-FAPI PET/CT: Tracer Uptake in 28 Different Kinds of Cancer

Pancreatic Ca

NET

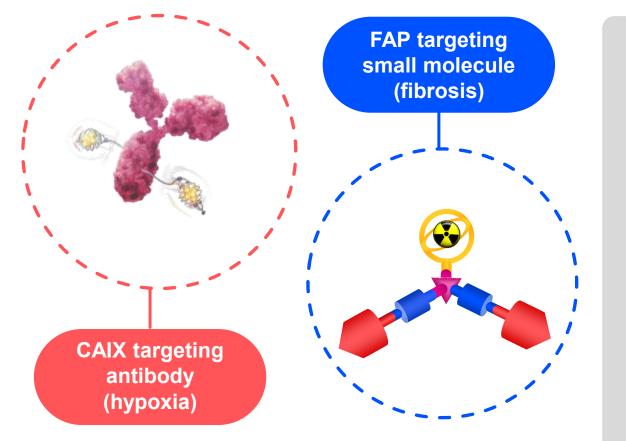
Head-Neck Ca



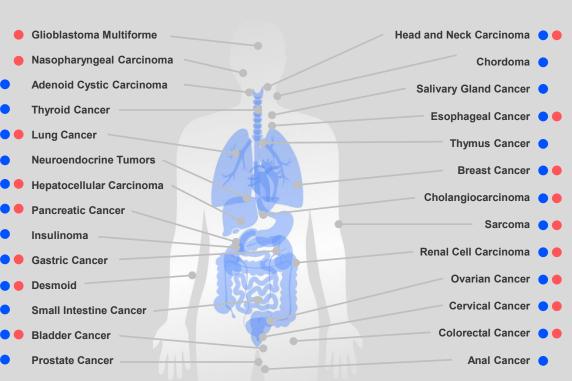
CCC

CUP

Ovaria



Small-Intestine Ca


Prostate Ca

CAIX + FAP: Potential multi-blockbuster opportunity

Exploring multi-indication asset strategies leveraging validated pan-tumor targets

Two well-validated targets with pan-cancer potential^{1, 2}

• CAIX

• FAP

Literature reports of CAIX expression.
 Giesel et al. *J Nucl Med.* 2019.

TLX252: Next generation alpha emitter entering clinic

CAIX-targeting ²²⁵Ac-labelled rADC for the treatment of patients with advanced cancer

Product candidate

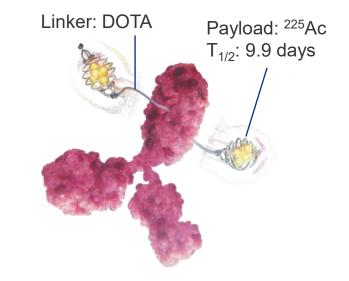
TLX252 (225Ac-DOTA-girentuximab)

Targeting molecule / target

Antibody / Carbonic anhydrase IX (CAIX)

Indication

Clear cell renal cell carcinoma


Clinical experience to date

- Preclinical data in RCC models indicate approach may lead to tumor growth delay without short-term toxicity¹
- Investigator-initiated trials demonstrated proofof-concept for CAIX-targeted alpha therapy in triple-negative breast cancer, non-muscleinvasive bladder cancer^{2,3}

Planned clinical activity

Phase 1 study in CAIX positive cancers:

Planning to commence patient enrolment at Australian sites in 2026, subject to regulatory approval

1. Proceedings from the TAT11/Journal of Medical Imaging and Radiation Sciences 50 (2019) S1-S42

2. ClinicalTrials.gov ID NCT04758780. Positive topline results presented at SABCS in December 2023, Telix media release 7 December 2023

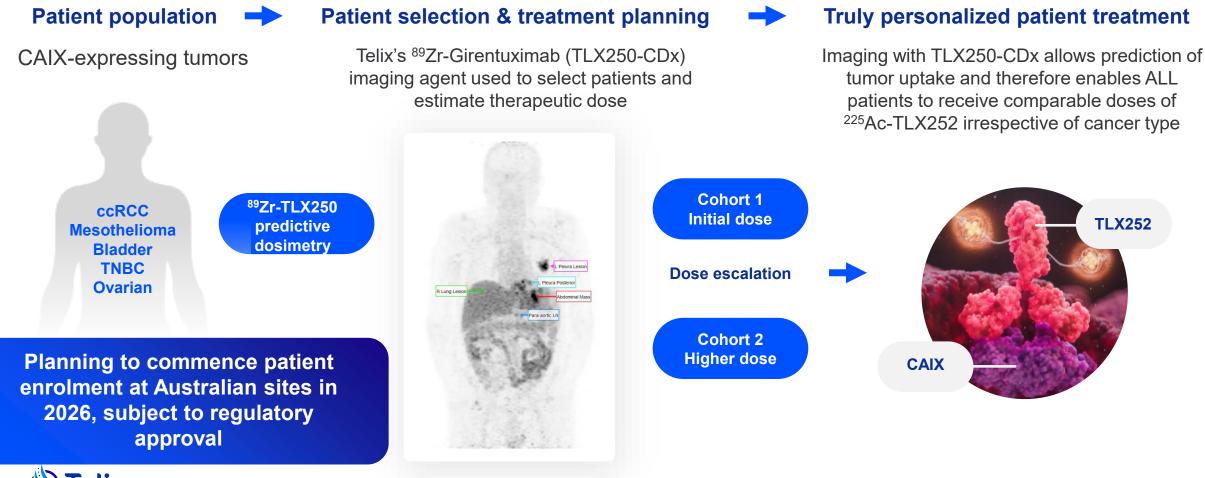
3. ClinicalTrials.gov ID NCT04897763

Clinical utility of ²²⁵Ac-TLX252

Significant unmet medical need for patients with CAIX-expressing tumors and opportunity to overcome hypoxia-driven treatment resistance

- Patients with tumors expressing high levels of CAIX, a marker of tumor hypoxia, have significantly poorer overall survival, shorter disease-free survival, and greater risk of recurrence and metastasis¹
- Overall, approximately 30-70% of patients have CAIX-high tumors across solid cancer types.
- CAIX is a broad indicator of aggressive, treatment-resistant disease in most solid tumors. For example, high CAIX expression is linked to:
 - > Chemoresistance: Including in breast cancer^{2,} ovarian cancer³ and bladder cancer⁴
 - Resistance to immunotherapy: In head and neck cancer, CAIX-positive, hypoxic tumors show impaired immune-cell function, with lower CAIX levels associated with better PD-1 inhibitor responses⁵
 - Radioresistance: Hypoxia (often associated with CAIX expression) induces radioresistance through a number of molecular pathways⁶
- The use of an α-emitter like ²²⁵Ac for CAIX-targeted radiation may help overcome treatment resistance in these
 aggressive tumors given the unique properties of α-particles, which make this treatment modality impervious to
 conventional cellular resistance mechanisms⁷

- 4. Leite et al. *Clin Genitourin Cancer.* 2022.
- 5. Zandberg et al. *J Immunother Cancer.* 2021
- 6. Pastorekova, S., Gillies, R.J. *Cancer Metastasis Rev.* 2019.
- 7. Sgouros G. Cancer Research. 2019.

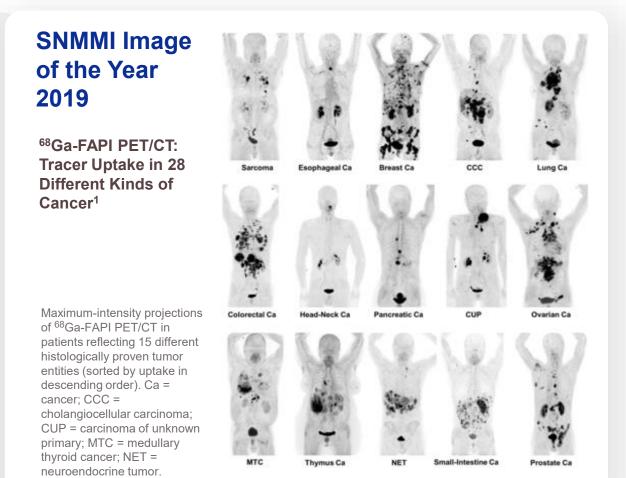

^{1.} van Kuijk et al. Front Oncol. 2016.

^{2.} Betof, et al. *Br J Cancer.* 2012.

^{3.} Williams et al. Virchows Arch. 2012.

TLX252 Phase 1 study in CAIX-positive cancers

Utilizing the theranostic pairing of imaging and alpha therapy to personalize treatment



FAP expression suggests potential target for pan-cancer theranostic

Opportunity to treat spectrum of tumors with single target

- FAP present on more than 90% of epithelial cancers, identified as a potential target for molecular imaging and therapy
- Broad expression on tumor stroma across solid tumors (including pancreatic, colorectal, breast, bladder) suggests pan-tumor potential
- In certain cancers (e.g., sarcoma, ovarian, pancreatic) FAP also expressed on cell surface, potentially enhancing efficacy
- Not expressed in most normal adult tissues
- This prevalence, along with the druggability of the target, is what makes FAP a potential Achilles' heel of cancer

TLX400: Next generation FAPi therapy with pan-tumor potential

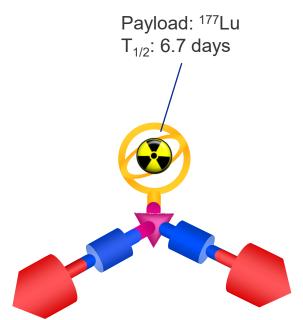
Product candidate ¹⁷⁷Lu-DOTAGA.Glu.(FAP)₂

Targeting molecule / target

Fibroblast Activation Protein (FAP)

Indication

Pan-cancer


Clinical experience to date

The diagnostic and therapeutic compounds have been clinically validated in over 700 patients across a variety of solid tumors and are the subject of multiple peer-review publications¹

Planned clinical activity

Planned to commence clinical development program in 2026: Pancancer basket study + lead indication (undisclosed)

Prof. Dr. Frederik L. Giesel Chair of Dept of Nuclear Medicine at Uni Düsseldorf

"FAP-targeting is very exciting. In the past, we have been successful in treating primarily one cancer type with a certain asset or therapeutic agent. Here we have opened a new door to treat a variety of cancer subtypes – a pan tumor target and even beyond."

TLX400: FAP-targeting candidate with pan-tumor potential

Next generation asset designed to overcome historical limitations of FAP therapy

Clinically-validated therapeutic and companion diagnostic

TLX400: ¹⁷⁷Lu-DOTAGA.Glu.(FAP)₂

- Designed to overcome limitations of current (first generation) FAP targeted radiotherapies e.g., short tumor residence and non-target organ uptake¹
- Engineered for prolonged tumor retention, delivering a substantial radiation dose to the tumor while minimizing off-target organ uptake and enhancing systemic clearance
- Therapeutic candidate: Clinical data in ~150 patients including sarcoma, breast, thyroid cancers, three published datasets and extensive peer-reviewed pre-clinical research²
- Complementary diagnostic agent enables patient selection and extension into bladder cancer
 - Significant clinical experience with over 550 patients dosed

Planned to commence clinical development program in 2026: *Pan-cancer basket study + lead indication for accelerated approval (undisclosed) as well as IITs*

Telix is leading the next generation of radiopharmaceuticals

We have multiple drivers of value creation

Commercial execution

Proven track record of commercial delivery with Illuccix

Now differentiated as the only provider with two FDA-approved PSMA-PET imaging agent for U.S.

Global expansion as Illuccix launches in Europe Pipeline Development

> Multiple near-term catalysts in Precision Medicine (Zircaix, Pixclara)

Key therapeutic assets progressing to pivotal trials (TLX591, 250, 101)

Advancing the nextgeneration assets and R&D platform Industry-leading manufacturing and supply chain

Manufacturing, isotope and distribution capabilities and partnerships

Global delivery and patient access

Zircaix and Pixclara brand names and marketing authorization subject to regulatory approval.

Contact:

Kyahn Williamson SVP Investor Relations and Corporate Communications

kyahn.williamson@telixpharma.com

Illustration showing TLX250 binding to carbonic anhydrase IX and internalization